Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
YAN Zhi-feng, LIAN Jie, ZHAO Zhou, HE Chun-qi, YUE Xiu-ping, WANG Yu-ping, WU Xing, LU Jian-jun. Theoretical insight into the conversion of glucose to 5-hydroxymethylfurfural in subcritical water[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1122-1131. doi: 10.1016/S1872-5813(21)60124-X
Citation: YAN Zhi-feng, LIAN Jie, ZHAO Zhou, HE Chun-qi, YUE Xiu-ping, WANG Yu-ping, WU Xing, LU Jian-jun. Theoretical insight into the conversion of glucose to 5-hydroxymethylfurfural in subcritical water[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1122-1131. doi: 10.1016/S1872-5813(21)60124-X

Theoretical insight into the conversion of glucose to 5-hydroxymethylfurfural in subcritical water

doi: 10.1016/S1872-5813(21)60124-X
Funds:  The project was supported by National Natural Science Foundation of China (51703153),Key Research and Development Program of Shanxi Province (201903D121032),Shanxi Province Science Foundation for Youths (201801D221365) and Science and Technology Program in Higher Education Institutions of Shanxi Province (2019L0311)
  • Received Date: 2021-05-24
  • Rev Recd Date: 2021-06-14
  • Available Online: 2021-06-23
  • Publish Date: 2021-08-31
  • The reaction mechanism of the isomerization of glucose to fructose and further dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) in subcritical water was investigated by the dispersion-corrected density functional theory (DFT-D) method with Dmol3 package in Materials Studio. The implicit solvent model was used to evaluate the bulk solvation under the conductor-like screening model (COSMO) approach, in which a dielectric constant ( ε ) of 27 was used to represent the subcritical water at 523.15 K. The explicit solvent model was adopted with a hybrid micro-solvation-continuum approach, to indicate the micro-solvation by explicit H2O molecules and the bulk solvation with ε = 27. The calculation results indicate that explicit H2O molecules participate in the reaction and catalytically promote the proton transfer processes, suggesting that the explicit solvent model is preferable to the implicit solvent model to represent the conversion of 5-HMF in subcritical water. The isomerization of glucose to fructose is exothermic by 5.26 kcal/mol, where the isomerization of open-chain glucose to enol form is the rate-determining step, with the activation energy of 33.89 kcal/mol; the free energy of transition state configuration depends upon both the difficulty in α–H extraction of open-chain glucose and the stability of formed carbocation. In contrast, the hydration of fructose to 5-HMF is exothermic by 12.93 kcal/mol and the first hydration is the rate-determining step, with the activation energy of 50.59 kcal/mol; the free energy of transition state configuration is determined by the stability of carbocation formed by the dehydration of protonated OH group at C(2) site of fructose. This work discloses the promoting effect of Brønsted base on the isomerization of glucose to fructose and that of Brønsted acid on the dehydration of fructose to 5-HMF, which may provide certain clues to the modification of catalytic sites and the selection of solvent in the conversion of glucose to 5-HMF.
  • loading
  • [1]
    YAN Z, LIAN J, FENG Y, LI M, LONG F, CHENG R, SHI S, GUO H, LU J. A mechanistic insight into glucose conversion in subcritical water: Complex reaction network and the effects of acid-base catalysis[J]. Fuel,2021,289:119969. doi: 10.1016/j.fuel.2020.119969
    [2]
    张强, 喻蓬秋, 李林, 乐治平. ZnCl2溶液中微波辅助SnCl4催化纤维素制备5-HMF[J]. 燃料化学学报,2017,45(3):317−322. doi: 10.3969/j.issn.0253-2409.2017.03.009

    ZHANG Qiang, YU Peng-qiu, LI Lin, LE Zhi-ping. Preparation of 5-HMF from cellulose catalyzed by SnCl4 under microwave in ZnCl2 solution[J]. J Fuel Chem Technol,2017,45(3):317−322. doi: 10.3969/j.issn.0253-2409.2017.03.009
    [3]
    郑洪岩, 赵子龙, 肖鲁青山, 赵文诗, 梁栩彬, 薛彦峰, 杨红, 牛宇岚, 朱玉雷. 分子筛催化纤维素和淀粉转化制糠醛[J]. 燃料化学学报: 1−9[2021-06-14]. http://kns.cnki.net/kcms/detail/14.1140.TQ.20210422.2120.003.html.

    ZHENG Hong-yan, ZHAO Zi-long, XIAO Lu-qing-shan, ZHAO Wen-shi, LIANG Xu-bin, XUE Yan-feng, YANG Hong, NIU Yu-lan, ZHU Yu-lei. Catalytic conversion of cellulose and starch to furfural over zeolites[J]. J Fuel Chem Technol, 1−9[2021-06-14]. http://kns.cnki.net/kcms/detail/14.1140.TQ.20210422.2120.003.html.
    [4]
    VAN PUTTEN R-J, VAN DER WAAL J C, DE JONG E, RASRENDRA C B, HEERES H J, DE VRIES J G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chem Rev,2013,113(3):1499−1597. doi: 10.1021/cr300182k
    [5]
    PIDKO E A, DEGIRMENCI V, VAN SANTEN R A, HENSEN E J M. Glucose activation by transient Cr2+ Dimers[J]. Angew Chem Int Ed,2010,49(14):2530−2534. doi: 10.1002/anie.201000250
    [6]
    BINDER J B, CEFALI A V, BLANK J J, RAINES R T. Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural[J]. Energy Environ Sci,2010,3(6):765−771. doi: 10.1039/b923961h
    [7]
    LIU C, CARRAHER J M, SWEDBERG J L, HERNDON C R, FLEITMAN C N, TESSONNIER J P. Selective base-catalyzed isomerization of glucose to fructose[J]. ACS Catal,2014,4(12):4295−4298. doi: 10.1021/cs501197w
    [8]
    张雄, 徐志祥, 李雪辉, 关建郁, 龙金星. 葡萄糖化学催化异构制备果糖研究进展[J]. 化工进展,2017,36(12):4575−4585.

    ZHANG Xiong, XU Zhi-xiang, LI Xue-hui, GUAN Jian-yu, LONG Jin-xing. Chemical isomerization of glucose into fructose[J]. Chem Ind Eng Prog,2017,36(12):4575−4585.
    [9]
    QI T, HE M-F, ZHU L-F, LYU Y-J, YANG H-Q, HU C-W. Cooperative catalytic performance of lewis and brønsted acids from AlCl3 salt in aqueous solution toward glucose-to-fructose isomerization[J]. J Phys Chem C,2019,123(8):4879−4891. doi: 10.1021/acs.jpcc.8b11773
    [10]
    张颖诗, 王艳, 万金泉, 马邕文, 连洁. 基于固体酸的纤维素非均相催化糖化的研究进展[J]. 化工进展,2014,33(11):2947−2955.

    ZHANG Ying-shi, WANG Yan, WAN Jin-quan, MA Yong-wen, LIAN Jie. Heterogeneous saccharification of cellulose by solid acid[J]. Chem Ind Eng Prog,2014,33(11):2947−2955.
    [11]
    YABUSHITA M, SHIBAYAMA N, NAKAJIMA K, FUKUOKA A. Selective glucose-to-fructose isomerization in ethanol catalyzed by hydrotalcites[J]. ACS Catal,2019,9(3):2101−2109. doi: 10.1021/acscatal.8b05145
    [12]
    唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报,2021,72(2):633−652.

    TANG Wei-qiang, XIE Peng, XU Xiao-fei, ZHAO Shuang-liang. Development and applications of reaction density functional theory[J]. CIESC J,2021,72(2):633−652.
    [13]
    周婷婷, 刘霞, 叶子航, 周奕鹏, 杨雅淇, 徐清. 三聚氯氰催化及溶剂效应实现温和高效的酮肟贝克曼重排反应[J]. 有机化学,2020,40:1−11. doi: 10.6023/cjoc201907028

    ZHOU Ting-ting, LIU Xia, YE Zi-hang, ZHOU Yi-peng, YANG Ya-qia, XU Qing. Cyanuric chloride catalysis and solvent effect leading to a mild and efficient Beckmann rearrangement of ketoximes[J]. Chin J Org Chem,2020,40:1−11. doi: 10.6023/cjoc201907028
    [14]
    宋英健, 崔晓静, 邓天昇, 秦张峰, 樊卫斌. 液相体系Ru-Co3O4催化CO2加氢制甲烷过程中的溶剂效应研究[J]. 燃料化学学报,2021,49(2):178−185. doi: 10.1016/S1872-5813(21)60013-0

    SONG Ying-jian, CUI Xiao-jing, DENG Tian-sheng, QIN Zhang-feng, FAN Wei-bin. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. J Fuel Chem Technol,2021,49(2):178−185. doi: 10.1016/S1872-5813(21)60013-0
    [15]
    SHIGEMOTO I, KAWAKAMI T, TAIKO H, OKUMURA M. A quantum chemical study on the thermal degradation reaction of polyesters[J]. Polym Degrad Stab,2012,97(6):941−947. doi: 10.1016/j.polymdegradstab.2012.03.020
    [16]
    CARTA D, CAO G, D’ANGELI C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis[J]. Environ Sci Pollut Res,2003,10(6):390−394. doi: 10.1065/espr2001.12.104.8
    [17]
    MCMAHON W, BIRDSALL H A, JOHNSON G R, CAMILLI C T. Degradation studies of polyethylene terephthalate[J]. J Chem Eng Data,1959,4(1):57−79. doi: 10.1021/je60001a009
    [18]
    PICKETT J E, COYLE D J. Hydrolysis kinetics of condensation polymers under humidity aging conditions[J]. Polym Degrad Stab,2013,98(7):1311−1320. doi: 10.1016/j.polymdegradstab.2013.04.001
    [19]
    DUBELLEY F, PLANES E, BAS C, PONS E, YRIEIX B, FLANDIN L. Predictive durability of polyethylene terephthalate toward hydrolysis over large temperature and relative humidity ranges[J]. Polymer,2018,142:285−292. doi: 10.1016/j.polymer.2018.03.043
    [20]
    RAVENS D A S, WARD I M. Chemical reactivity of polyethylene terephthalate. Hydrolysis and esterification reactions in the solid phase[J]. Trans Faraday Soc,1961,57(0):150−159.
    [21]
    YOSHIOKA T, OKAYAMA N, OKUWAKI A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model[J]. Ind Eng Chem Res,1998,37(2):336−340. doi: 10.1021/ie970459a
    [22]
    YAN Z, LIAN J, LI M, MENG L, ZHANG Y, GE C, LU J. Deeper insight into hydrolysis mechanisms of polyester/cotton blended fabrics for separation by explicit solvent models[J]. Int J Biol Macromol,2020,154:596−605. doi: 10.1016/j.ijbiomac.2020.03.130
    [23]
    WANG L-P, MARTINEZ T J, PANDE V S. Building force fields: An automatic, systematic, and reproducible approach[J]. J Phys Chem Lett,2014,5(11):1885−1891. doi: 10.1021/jz500737m
    [24]
    CHEN J, BROOKS C L, KHANDOGIN J. Recent advances in implicit solvent-based methods for biomolecular simulations[J]. Curr Opin Struc Biol,2008,18(2):140−148. doi: 10.1016/j.sbi.2008.01.003
    [25]
    BR LL D, KAUL C, KR MER A, KRAMMER P, RICHTER T, JUNG M, VOGEL H, ZEHNER P. Chemistry in supercritical water[J]. Angew Chem Int Ed,1999,38(20):2998−3014. doi: 10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-L
    [26]
    ZHAO Y, LU W-J, WANG H-T, LI D. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses[J]. Environ Sci Technol,2009,43(5):1565−1570. doi: 10.1021/es803122f
    [27]
    赵岩, 李冬, 陆文静, 王洪涛, 朴雪松. 纤维素超临界水预处理与水解研究[J]. 化学学报,2008,66(20):2295−2301. doi: 10.3321/j.issn:0567-7351.2008.20.018

    ZHAO Yan, LI Dong, LU Wen-jing, WANG Hong-tao, PIAO Xue-song. Supercritical pretreatment and hydrolyzation of cellulose[J]. Acta Chim Sin,2008,66(20):2295−2301. doi: 10.3321/j.issn:0567-7351.2008.20.018
    [28]
    PROMDEJ C, MATSUMURA Y. Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water[J]. Ind Eng Chem Res,2011,50(14):8492−8497. doi: 10.1021/ie200298c
    [29]
    SASAKI M, FANG Z, FUKUSHIMA Y, ADSCHIRI T, ARAI K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Ind Eng Chem Res,2000,39(8):2883−2890. doi: 10.1021/ie990690j
    [30]
    YU Y, LOU X, WU H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods[J]. Energy Fuels,2008,22(1):46−60. doi: 10.1021/ef700292p
    [31]
    KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions[J]. J Supercrit Fluids,2007,39(3):362−380. doi: 10.1016/j.supflu.2006.03.016
    [32]
    GRIMME S, ANTONY J, EHRLICH S, KRIEG H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,132(15):154104−154119. doi: 10.1063/1.3382344
    [33]
    DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys,1990,92(1):508−517. doi: 10.1063/1.458452
    [34]
    DELLEY B. Fast calculation of electrostatics in crystals and large molecules[J]. J Phys Chem,1996,100(15):6107−6110. doi: 10.1021/jp952713n
    [35]
    PEVERATI R, BALDRIDGE K K. Implementation and optimization of DFT-D/COSab with respect to basis set and functional: Application to polar processes of furfural derivatives in solution[J]. J Chem Theory Comput,2009,5(10):2772−2786. doi: 10.1021/ct900363n
    [36]
    SIROHIWAL A, NEESE F, PANTAZIS D A. Microsolvation of the redox-active Tyrosine-D in photosystem II: correlation of energetics with EPR spectroscopy and oxidation-induced proton transfer[J]. J Am Chem Soc,2019,141(7):3217−3231. doi: 10.1021/jacs.8b13123
    [37]
    AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chem Rev,2002,102(8):2725−2750. doi: 10.1021/cr000668w
    [38]
    HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem Phys Lett,1977,49(2):225−232. doi: 10.1016/0009-2614(77)80574-5
    [39]
    PENG C, BERNHARD SCHLEGEL H. Combining synchronous transit and quasi-newton methods to find transition states[J]. Isr J Chem,1993,33(4):449−454. doi: 10.1002/ijch.199300051
    [40]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (888) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return