Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LIANG Yuan, LI Zhi-jian, LIU Qi-ying, MA Long-long. Selective xylose hydrogenolysis to 1,2-diols using Co@NC catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1898-1910. doi: 10.1016/S1872-5813(21)60125-1
Citation: LIANG Yuan, LI Zhi-jian, LIU Qi-ying, MA Long-long. Selective xylose hydrogenolysis to 1,2-diols using Co@NC catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1898-1910. doi: 10.1016/S1872-5813(21)60125-1

Selective xylose hydrogenolysis to 1,2-diols using Co@NC catalysts

doi: 10.1016/S1872-5813(21)60125-1
Funds:  The project was supported by the National Key R&D Program of China (2018YFB1501402), the National Natural Science Foundation of China (51976220) and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N092)
  • Received Date: 2021-05-21
  • Rev Recd Date: 2021-06-10
  • Available Online: 2021-07-12
  • Publish Date: 2021-12-29
  • Xylose is the predominant component of hemicellulose, and converting xylose to valuable compounds is essential to achieve biomass utilization. Herein, N-doped carbon nanotubes encapsulated metal catalysts (Co@NC) with hydrogenation and isomerization capacities were synthesized via bottom-up method for catalyzing xylose hydrogenolysis into 1,2-diols. The physicochemical properties of Co@NC prepared with different calcination temperature were determined by XRD, TEM, XPS and so on. The Co@NC prepared at 600 ℃ exhibited the optimal catalytic activity, and the yield of diols reached 70.1% with ethylene glycol, 1,2-propylene glycol and 1,2-pentanediol being 17.6%, 25.1% and 27.4%, respectively. The doping N species served as the basic sites which benefited the isomerization of xylose to xylulose. Xylulose was subsequently converted to glycolaldehyde and acetol through Retro-aldol reaction, followed by hydrogenation to produce ethylene glycol and 1,2-propylene glycol. 1,2-Pentanediol derived from the selective hydrodeoxygenation of xylose, the yield of which surpassed the results that had been reported. The Co@NC catalysts with high robustness under harsh hydrothermal conditions provided new insights into the effective conversion of lignocellulosic biomass to 1,2-diols.
  • loading
  • [1]
    KAUR M, KUMAR M, SACHDEVA S, PURI S K. Aquatic weeds as the next generation feedstock for sustainable bioenergy production[J]. Bioresour Technol,2018,251:390−402. doi: 10.1016/j.biortech.2017.11.082
    [2]
    ZHAO W, ZHAO F, ZHANG S, GONG Q, CHEN G. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk[J]. J Basic Microbiol,2019,59(7):744−753. doi: 10.1002/jobm.201900117
    [3]
    许彦娟, 糠醛催化加氢制备1, 2-戊二醇的研究[D]. 杭州: 浙江大学, 2014.

    XU Yan-juan, Study on catalytic hydrogenolysis of furfuryl alcohol into 1, 2-pentanediol[D]. Hangzhou: Zhejiang University, 2014.
    [4]
    ORDOMSKY V V, SCHOUTEN J C, VAN DER SCHAAF J, NIJHUIS T A. Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural[J]. Appl Catal A: Gen,2013,451:6−13. doi: 10.1016/j.apcata.2012.11.013
    [5]
    WANG N, CHEN Z, LIU L. Acid catalysis dominated suppression of xylose hydrogenation with increasing yield of 1,2-pentanediol in the acid-metal dual catalyst system[J]. Appl Catal A: Gen,2018,561:41−48. doi: 10.1016/j.apcata.2018.05.019
    [6]
    SUN J, LIU H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts[J]. Green Chem,2011,13(1):135−142. doi: 10.1039/C0GC00571A
    [7]
    VIJAYA SHANTHI R, MAHALAKSHMY R, THIRUNAVUKKARASU K, SIVASANKER S. Hydrogenolysis of sorbitol over Ni supported on Ca- and Ca(Sr)-hydroxyapatites[J]. Mol Catal,2018,451:170−177. doi: 10.1016/j.mcat.2017.12.031
    [8]
    DENG J, DENG D, BAO X. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective[J]. Adv Mater,2017,29(43):2100−2104.
    [9]
    GONG W, CHEN C, ZHANG H, WANG G, ZHAO H. Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase[J]. Catal Sci Technol,2018,8(21):5506−5514. doi: 10.1039/C8CY01488D
    [10]
    AIJAZ A MASA J, ROSLER C, XIA W, WEIDE P, BOTZ A J, FISCHER R A, SCHUHMANN W, MUHLER M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode[J]. Angew Chem Int Ed Eng,2016,55(12):4087−4091. doi: 10.1002/anie.201509382
    [11]
    XU X. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries[J]. Adv Funct Mater,2018,28(16):1707573. doi: 10.1002/adfm.201707573
    [12]
    TU Y, REN P, DENG D, BAO X. Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation[J]. Nano Energy,2018,52:494−500. doi: 10.1016/j.nanoen.2018.07.062
    [13]
    FANG L J, WANG X L, LI Y H, LIU P F, WANG Y L, ZENG H D, YANG H G. Nickel nanoparticles coated with graphene layers as efficient co-catalyst for photocatalytic hydrogen evolution[J]. Appl Catal B: Environ,2017,200:578−584. doi: 10.1016/j.apcatb.2016.07.033
    [14]
    AI L, SU J, WANG M, JIANG J. Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: An efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Sustainable Chem Eng,2018,6(8):9912−9920. doi: 10.1021/acssuschemeng.8b01120
    [15]
    DUAN X, AO Z, SUN H, INDRAWIRAWAN S, WANG Y, KANG J, LIANG F, ZHU Z H, WANG S. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis[J]. ACS Appl Mater Inter,2015,7(7):4169−4178. doi: 10.1021/am508416n
    [16]
    LIU B, DAI W, LIANG Z, YE J, OUYANG L. Fe/N/C carbon nanotubes with high nitrogen content as effective non-precious catalyst for oxygen reduction reaction in alkaline medium[J]. Int J Hydrogen Energy,2017,42(9):5908−5915. doi: 10.1016/j.ijhydene.2016.12.043
    [17]
    FENG X, BO X, GUO L. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions[J]. J Power Sources,2018,389:249−259. doi: 10.1016/j.jpowsour.2018.04.027
    [18]
    KANG J, DUAN X, WANG C, SUN H, TAN X, TADE M O, WANG S. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability[J]. Chem Eng J,2018,332:398−408. doi: 10.1016/j.cej.2017.09.102
    [19]
    ZHUANG M, OU X, DOU Y, ZHANG L, ZHANG Q, WU R, DING Y, SHAO M, LUO Z. Polymer-embedded Fabrication of Co 2P nanoparticles encapsulated in N,P-doped graphene for hydrogen generation[J]. Nano Lett,2016,16(7):4691−4698. doi: 10.1021/acs.nanolett.6b02203
    [20]
    SI Y, ZHANG Y, LU L, ZHANG S, CHEN Y, LIU J, JIN H, HOU S, DAI K, SONG W. Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon[J]. Appl Catal B: Environ,2018,225:512−518. doi: 10.1016/j.apcatb.2017.12.010
    [21]
    YAO Y, CHEN H, LIAN C, WEI F, ZHANG D, WU G, CHEN B, WANG S. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. J Hazard Mater,2016,314:129−139. doi: 10.1016/j.jhazmat.2016.03.089
    [22]
    LIU Q, WANG H, XIN H, WANG C, YAN L, WANG Y ZHANG Q, ZHANG X, XU Y, HUBER G W, MA L. Selective cellulose hydrogenolysis to ethanol using Ni@C combined with phosphoric acid catalysts[J]. ChemSusChem,2019,12(17):3977−3987. doi: 10.1002/cssc.201901110
    [23]
    ZENG M, LIU Y, ZHAO F, NIE K, HAN N, WANG X, HUANG W, SONG X, ZHONG J, LI Y. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries[J]. Adv Funct Mater,2016,26(24):4397−4404. doi: 10.1002/adfm.201600636
    [24]
    ZHANG X, LIU S, ZANG Y, LIU R, LIU G, WANG G, ZHANG Y, ZHANG H, ZHAO H. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media[J]. Nano Energy,2016,30:93−102. doi: 10.1016/j.nanoen.2016.09.040
    [25]
    MO Z, XU H, CHEN Z, SHE X, SONG Y, LIAN J, ZHU X, YAN P, LEI Y, YUAN S, LI H. Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting[J]. Appl Catal B: Environ,2019,241:452−460. doi: 10.1016/j.apcatb.2018.08.073
    [26]
    XIU Z, WANG H, CAI C, LI C, YAN L, WANG C, LI W, XIN H, ZHU C, ZHANG Q, LIU Q, MA L. Ultrafast glycerol conversion to lactic acid over magnetically recoverable Ni-NiOx@C catalysts[J]. Ind Eng Chem Res,2020,59(21):9912−9925. doi: 10.1021/acs.iecr.0c01145
    [27]
    JIN L, ZHAO X, QIAN X, DONG M. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes[J]. J Colloid Interface Sci,2018,509:245−253. doi: 10.1016/j.jcis.2017.09.002
    [28]
    LIU C, SHANG Y, QI H, WANG X, GUI J, ZHANG C, ZHU Y, LI Y. Effect of the ZrO2 phase on Pd-based bifunctional catalysts for the hydrogenolysis of glucose[J]. Catal Commun,2019,128:105688. doi: 10.1016/j.catcom.2019.04.020
    [29]
    FANG R, LIU H, LUQUE R, LI Y. Efficient and selective hydrogenation of biomass-derived furfural to cyclopentanone using Ru catalysts[J]. Green Chem,2015,17(8):4183−4188. doi: 10.1039/C5GC01462J
    [30]
    LANGE J P, WADMAN S H. Furfural to 1,4-butanediol/tetrahydrofuran-a detailed catalyst and process design[J]. ChemSusChem,2020,13(19):5329−5337. doi: 10.1002/cssc.202001376
    [31]
    CORMA A, DE LA TORRE O, RENZ M, VILLANDIER N. Production of high-quality diesel from biomass waste products[J]. Angew Chem Int Ed Eng,2011,50(10):2375−2378. doi: 10.1002/anie.201007508
    [32]
    SONG H, WANG P, LI S, DENG W, LI Y, ZHANG Q, WANG Y. Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles[J]. Chem Commun (Camb),2019,55(30):4303−4306. doi: 10.1039/C9CC00619B
    [33]
    GU M, SHEN Z, YANG L, DONG W, KONG L, ZHANG W, PENG B Y, ZHANG Y. Reaction route selection for cellulose hydrogenolysis into C2/C3 glycols by ZnO-modified Ni-W/beta-zeolite catalysts[J]. Sci Rep,2019,9(1):11938. doi: 10.1038/s41598-019-48103-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (594) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return