Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ABOUL-ENEIN Ateyya A., AWADALLAH Ahmed E., EL-DESOUKI Doaa S., ABOUL-GHEIT Noha A.K.. Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1421-1434. doi: 10.1016/S1872-5813(21)60127-5
Citation: ABOUL-ENEIN Ateyya A., AWADALLAH Ahmed E., EL-DESOUKI Doaa S., ABOUL-GHEIT Noha A.K.. Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1421-1434. doi: 10.1016/S1872-5813(21)60127-5

Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes

doi: 10.1016/S1872-5813(21)60127-5
Funds:  The project was supported by the Science and Technology Development Fund (STDF) in Egypt (34830).
More Information
  • Corresponding author: E-mail: ateyya_epri2007@yahoo.com
  • Received Date: 2021-03-17
  • Rev Recd Date: 2021-05-14
  • Available Online: 2021-07-16
  • Publish Date: 2021-10-30
  • Recently, the disposal of waste by beneficial and environmentally friendly methods has attracted great attention. In this work, we have studied the production of high-value carbon nanotubes (CNTs) which have remarkable applications by catalytic pyrolysis of sugarcane bagasse (SCB) as an agricultural waste using a two-stage process. Various reaction factors including the effects of zeolite types (HZSM-5, HMOR, and HY), pyrolysis temperatures (450−700 °C), and SCB/ZSM-5 ratios (3−12) on SCB pyrolysis were investigated to generate CNTs from pyrolysis products. A Co-Mo/MgO catalyst was used for growing CNTs via the decomposition of pyrolysis products. The morphological structure and quality of CNTs were characterized using TEM and Raman spectroscopy, while the fresh Co-Mo/MgO catalyst was characterized by XRD and TPR analyses. The results showed that zeolite type, pyrolysis temperature, and SCB/ZSM-5 ratio had significant effects on the CNTs yield. The optimum carbon yield (24.9%) was achieved using the HZSM-5 catalyst at the pyrolysis temperature of 500 °C and with the SCB/ZSM-5 ratio of 6. TEM observations confirmed the growth of bamboo-like carbon nanotubes (BCNTs) and carbon nano-onions (CNOs) in different proportions according to the reaction parameters. Also, CNTs with the largest diameter distribution range (7−76 nm) were produced using the SCB/ZSM-5 ratio of 6. Raman spectra demonstrated the production of high-quality CNTs under all studied conditions.
  • loading
  • [1]
    RAJA S, MATTOSO L H C, MOREIRA F K V. Biomass-Derived Nanomaterials. Nanostructured Materials for Energy Related Applications[M]. Cham: Springer Nature Switzerland AG, 2019: 243−270.
    [2]
    TITIRICI M-M, WHITE R J, BRUN N, BUDARIN V L, SU D S, DEL MONTE F, CLARK J H, MACLACHLAN M J. Sustainable carbon materials[J]. Chem Soc Rev,2015,44:250−290. doi: 10.1039/C4CS00232F
    [3]
    SHEN D, JIN W, HU J, XIAO R, LUO K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions[J]. Renewable Suseamable Energy Rev,2015,51(6):761−774.
    [4]
    PATRA T K, SHETH P N. Biomass gasification coupled with producer gas cleaning, bottling and HTS catalyst treatment for H2-rich gas production[J]. Int J Hydrogen Energy,2019,44:11602−11616. doi: 10.1016/j.ijhydene.2019.03.107
    [5]
    BASU P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory[M]. Amsterdam: Elsevier, 2018.
    [6]
    REZAEI P S, SHAFAGHAT H, DAUD W M A W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review [J]. Appl Catal A: Gen, 2014, 469: 491−511.
    [7]
    CHA J S, PARK S H, JUNG S C, RYU C, JEON J K, SHIN M C, PARK Y K. Production and utilization of biochar: A review[J]. J Ind Eng Chem,2016,40:1−15.
    [8]
    QIAN K, KUMAR A, ZHANG H, BELLMER D, HUHNKE R. Recent advances in utilization of biochar[J]. Renewable Sustainable Energy Rev,2015,42:1055−1064.
    [9]
    VERMA D, GOPE P C, SINGH I, JAIN S. Processing and Properties of Bagasse Fibers. Biomass and Bioenergy: Processing and Properties. [M], Springer International Publishing, 2014: 63-75.
    [10]
    GARCA-PÈREZ M, CHAALA A, ROY C. Vacuum pyrolysis of sugarcane bagasse[J]. J Anal Appl Pyrolysis,2002,65:111−136. doi: 10.1016/S0165-2370(01)00184-X
    [11]
    DRUMMOND A R F, DRUMMOND I W. Pyrolysis of sugar cane bagasse in a wire-mesh reactor[J]. Ind Eng Chem Res,1996,35:1263−1268. doi: 10.1021/ie9503914
    [12]
    FRAGA-ARAUJO A R. Pyrolytic decomposition of lignocellulosic materials[D]. London: Imperial College, University of London, 1990.
    [13]
    SARANGI D, HIEROLD C, KARIMI A. Carbon nanotubes over metallic wires and its possible applications[J]. Fullerenes, Nanotub, Carbon Nanostruct,2005,13:243−254. doi: 10.1081/FST-200039287
    [14]
    POUDEL YR, LI W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review[J]. Mater Today Phys,2018,7:7−34. doi: 10.1016/j.mtphys.2018.10.002
    [15]
    XIE X, GAN T, SUN D, WU K. Application of multi‐walled carbon nanotubes/nafion composite film in electrochemical determination of Pb2+[J]. Fullerenes, Nanotub, Carbon Nanostruct,2008,16:103−13. doi: 10.1080/15363830801887935
    [16]
    HARRIS P J F. Carbon Nanotube Science: Synthesis, Properties and Applications [M]. Cambridge: Cambridge University Press, 2009.
    [17]
    MAZOV I N, RUDINA N A, ISHCHENKO A V., KUZNETSOV V L, ROMANENKO A I, ANIKEEVA O B, SUSLYAEV V I, ZHURAVLEV V A. Structural and physical properties of MWNT/polyolefine composites[J]. Fullerenes, Nanotub, Carbon Nanostructures,2012,20:510−518. doi: 10.1080/1536383X.2012.655956
    [18]
    ROSLAN M S, CHAUDARY K T, HAIDER Z, AZIZ M S, ALI J. Multi-walled carbon nanotubes grow under low pressure hydrogen, air, and argon ambient by arc discharge plasma[J]. Fullerenes, Nanotub, Carbon Nanostructures,2017,25:269−272. doi: 10.1080/1536383X.2017.1285287
    [19]
    CHRZANOWSKA J, HOFFMAN J, MAŁOLEPSZY A, MAZURKIEWICZ M, KOWALEWSKI T A, SZYMANSKI Z, STOBINSKI L. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength[J]. Phys Status Solidi,2015,252:1860−1867. doi: 10.1002/pssb.201451614
    [20]
    AWADALLAH A E, ABDEL-HAMID S M, EL-DESOUKI D S, ABOUL-ENEIN A A, ABOUL-GHEIT A K. Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts[J]. Egypt J Pet,2012,21:101−107. doi: 10.1016/j.ejpe.2012.11.005
    [21]
    SHUKRULLAH S, MOHAMED N M, SHAHARUN M S, NAZ M Y. Mass production of carbon nanotubes using fluidized bed reactor: A Short review[J]. Trends Appl Sci Res,2014,9:121−131. doi: 10.3923/tasr.2014.121.131
    [22]
    KUMAR M, ANDO Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production[J]. J Nanosci Nanotechnol,2010,10:3739−58. doi: 10.1166/jnn.2010.2939
    [23]
    AWADALLAH A E, ABDEL-MOTTALEB M S, ABOUL-ENEIN A A, YONIS M M, ABOUL-GHEIT A K. Catalytic decomposition of natural gas to CO/CO2-free hydrogen production and carbon nanomaterials using MgO-supported monometallic iron family catalysts[J]. Chem Eng Commun,2015,202:163−74. doi: 10.1080/00986445.2013.836631
    [24]
    AWADALLAH A E, ABOUL-ENEIN A A, EL-DESOUKI D S, ABOUL-GHEIT A K. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts[J]. Appl Surf Sci,2014,296:100−107. doi: 10.1016/j.apsusc.2014.01.055
    [25]
    AWADALLAH A E, AHMED W, NOOR EL-DIN M R, ABOUL-ENEIN A A. Novel aluminosilicate hollow sphere as a catalyst support for methane decomposition to CO <inf>x</inf> -free hydrogen production[J]. Appl Surf Sci,2013,287:415−422.
    [26]
    CHEN F, WU C, DONG L, VASSALLO A, WILLIAMS P T, HUANG J. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust[J]. Appl Catal B: Environ,2016,183:168−175. doi: 10.1016/j.apcatb.2015.10.028
    [27]
    LIU W J, TIAN K, HE Y R, JIANG H, YU H Q. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environ Sci Technol,2014,48:13951−13959. doi: 10.1021/es504184c
    [28]
    THOMPSON E, DANKS A E, BOURGEOIS L, SCHNEPP Z. Iron-catalyzed graphitization of biomass[J]. Green Chem,2015,17:551−556. doi: 10.1039/C4GC01673D
    [29]
    BERND M G S, BRAGANÇA S R, HECK N, FILHO LCPDS. Synthesis of carbon nanostructures by the pyrolysis of wood sawdust in a tubular reactor[J]. J Mater Res Technol,2017,6:171−177. doi: 10.1016/j.jmrt.2016.11.003
    [30]
    ALVES J O, ZHUO C, LEVENDIS Y A, TENÓRIO J A S. Catalytic conversion of wastes from the bioethanol production into carbon nanomaterials[J]. Appl Catal B: Environ,2011,106:433−444. doi: 10.1016/j.apcatb.2011.06.001
    [31]
    ABOUL-ENEIN A A, ARAFA E I, ABDEL-AZIM S M, AWADALLAH A E. Synthesis of multiwalled carbon nanotubes from polyethylene waste to enhance the rheological behavior of lubricating grease[J]. Fullerenes, Nanotub, Carbon Nanostructures, 2020. Doi: 10.1080/1536383X.2020.1806828.
    [32]
    ABOUL-ENEIN A A, AWADALLAH A E. Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste[J]. Mater Chem Phys,2019,238:121879. doi: 10.1016/j.matchemphys.2019.121879
    [33]
    ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chem Eng J,2018,354:802−816. doi: 10.1016/j.cej.2018.08.046
    [34]
    INFANTES-MOLINA A, MÉRIDA-ROBLES J, RODRÍGUEZ-CASTELLÓN E, PAWELEC B, FIERRO JLG, JIMÉNEZ-LÓPEZ A. Catalysts based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/hydrocracking of tetralin[J]. Appl Catal A: Gen,2005,286:239−248. doi: 10.1016/j.apcata.2005.03.022
    [35]
    AWADALLAH A E, ABOUL-ENEIN A A. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co-W/MgO catalysts[J]. Egypt J Pet,2015,24:299−306. doi: 10.1016/j.ejpe.2015.07.008
    [36]
    AWADALLAH A E, ABOUL-ENEIN A A, ABOUL-GHEIT A K. Impact of group VI metals addition to Co/MgO catalyst for non-oxidative decomposition of methane into COx-free hydrogen and carbon nanotubes[J]. Fuel,2014,129:27−36. doi: 10.1016/j.fuel.2014.03.038
    [37]
    TUTI S, PEPE F. On the catalytic activity of cobalt oxide for the steam reforming of ethanol[J]. Catal lett,2008,122:196−203.
    [38]
    MILLER J E, JACKSON N B, EVANS L, SAULT A G, GONZALES M M. The formation of active species for oxidative dehydrogenation of propane on magnesium molybdates[J]. Catal Lett,1999,58:147−152. doi: 10.1023/A:1019013514105
    [39]
    ABOUL-ENEIN A A, AWADALLAH A E. A novel design for mass production of multi-walled carbon nanotubes using Co-Mo/MgO catalyst via pyrolysis of polypropylene waste: Effect of operating conditions[J]. Fullerenes, Nanotub, Carbon Nanostructures,2018,26:591−605. doi: 10.1080/1536383X.2018.1476344
    [40]
    ABOUL-FOTOUH S M K, ALI L I, NAGHMASH M A, ABOUL-GHEIT N A K. Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication[J]. Fuel Chem Technol,2017,45(5):581−588.
    [41]
    AWADALLAH A E, EL-DESOUKI D S, ABOUL-GHEIT N A K, IBRAHIM A H, ABOUL-GHEIT A K. Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials[J]. Int J Hydrogen Energy,2016,41:16890−902. doi: 10.1016/j.ijhydene.2016.07.081
    [42]
    TRAVKINA O S, AGLIULLIN M R, FILIPPOVA N A, KHAZIPOVA A N, DANILOVA I G, GRIGOR’EVA N G, NARENDER N, PAVLOV M L, KUTEPOV B I. Template-free synthesis of high degree crystallinity zeolite y with micro-meso-macroporous structure[J]. RSC Adv,2017,7:32581−32590. doi: 10.1039/C7RA04742H
    [43]
    KATADA N, IGI H, KIM J H, NIWA M. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. J Phys Chem B,1997,101:5969−5677.
    [44]
    WEBER R W, MÖLLER K P, O’CONNOR C T. The chemical vapour and liquid deposition of tetraethoxysilane on ZSM-5, mordenite and beta[J]. Microporous Mesoporous Mater,2000,35–36:533−543.
    [45]
    CHU S, YANG L, GUO X, DONG L, CHEN X, LI Y, MU X. The influence of pore structure and Si/Al ratio of HZSM-5 zeolites on the product distributions of Α-cellulose hydrolysis[J]. Mol Catal,2018,445:240−247. doi: 10.1016/j.mcat.2017.11.032
    [46]
    GAO Y, ZHENG B, WU G, MA F, LIU C. Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization[J]. RSC Adv,2016,6:83581−83588. doi: 10.1039/C6RA17084F
    [47]
    KOUVA S, KANERVO J, SCHÜSSLER F, OLINDO R, LERCHER JA, KRAUSE O. Sorption and diffusion parameters from vacuum-TPD of ammonia on H-ZSM-5[J]. Chem Eng Sci,2013,89:40−48. doi: 10.1016/j.ces.2012.11.025
    [48]
    LÜ J, ZHOU S, MA K, MENG M, TIAN Y. The effect of P modification on the acidity of HZSM-5 and P-HZSM-5/CuO-ZnO-Al2O3 mixed catalysts for hydrogen production by dimethyl ether steam reforming[J]. Chin J Catal,2015,36:1295−1303.
    [49]
    PRASEK J, DRBOHLAVOVA J, CHOMOUCKA J, HUBALEK J, JASEK O, ADAM V, KIZEK R. Methods for carbon nanotubes synthesis—review[J]. J Mater Chem,2011,21:15872. doi: 10.1039/c1jm12254a
    [50]
    DEBALINA B, REDDY RB, VINU R. Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors[J]. J Anal Appl Pyrolysis,2017,124:310−318. doi: 10.1016/j.jaap.2017.01.018
    [51]
    RABO J A. Zeolite Chemistry and Catalysis, Acs Monograph No 171 [M], Washington , DC: ACS, 1976.
    [52]
    MIHALCIK D J, MULLEN C A, BOATENG A A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components[J]. J Anal Appl Pyrolysis,2011,92:224−232. doi: 10.1016/j.jaap.2011.06.001
    [53]
    RAHMAN M M, LIU R, CAI J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review[J]. Fuel Process Technol,2018,180:32−46.
    [54]
    WANG K, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chem,2014,16:727−735. doi: 10.1039/C3GC41288A
    [55]
    WANG K, BROWN R C. Catalytic pyrolysis of corn dried distillers grains with solubles to produce hydrocarbons[J]. ACS Sustainable Chem Eng,2014,2:2142−2148. doi: 10.1021/sc5003374
    [56]
    VICHAPHUND S, AHT-ONG D, SRICHAROENCHAIKUL V, ATONG D. Catalytic upgrading pyrolysis vapors of jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS[J]. Renewable Energy,2014,65:70−77. doi: 10.1016/j.renene.2013.07.016
    [57]
    DRESSELHAUS M S, DRESSELHAUS G, SAITO R, JORIO A. Raman spectroscopy of carbon nanotubes[J]. Phys Rep,2005,409:47−99. doi: 10.1016/j.physrep.2004.10.006
    [58]
    DRESSELHAUS M S, JORIO A, HOFMANN M, DRESSELHAUS G, SAITO R. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Lett,2010,10:751−758. doi: 10.1021/nl904286r
    [59]
    GONG J, LIU J, WAN D, CHEN X, WEN X, MIJOWSKA E, JIANG Z, WANG Y, TANG T. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Appl Catal A: Gen,2012,449:112−120. doi: 10.1016/j.apcata.2012.09.028
    [60]
    DILEO R A, LANDI B J, RAFFAELLE R P. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy[J]. J Appl Phys,2007,101:64307−64312. doi: 10.1063/1.2712152
    [61]
    YAO D, ZHANG Y, WILLIAMS P T, YANG H, CHEN H. Co-production of hydrogen and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters[J]. Appl Catal B: Environ,2018,221:584−597. doi: 10.1016/j.apcatb.2017.09.035
    [62]
    LI J, LI J, ZHU Q. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/MgO catalyst[J]. Chin J Chem Eng,2018,26:2344−2350. doi: 10.1016/j.cjche.2018.05.025
    [63]
    FARAHEEN KABIR AHMAD S, FAZARA MD ALI U, MD ISA K, RAHAYU MOHAMED A, SATAIMURTHI O. Comparative performance of catalytic and non-catalytic pyrolysis of sugarcane bagasse in catatest reactor system [C]// IOP Conference Series: Materials science and engineering. London: Institute of Physics Publishing, 2020: 012069.
    [64]
    ABOUL-ENEIN A A, SOLIMAN F S, BETIHA M A. Co-production of hydrogen and carbon nanomaterials using NiCu/SBA15 catalysts by pyrolysis of a wax by-product: Effect of Ni-Cu loading on the catalytic activity[J]. Int J Hydrogen Energy,2019,44:31104−31120. doi: 10.1016/j.ijhydene.2019.10.042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (346) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return