Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
GHAEDI Mohammad, IZADBAKHSH Ali. Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1468-1486. doi: 10.1016/S1872-5813(21)60130-5
Citation: GHAEDI Mohammad, IZADBAKHSH Ali. Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1468-1486. doi: 10.1016/S1872-5813(21)60130-5

Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation

doi: 10.1016/S1872-5813(21)60130-5
More Information
  • Corresponding author: E-mail: izadbakhsh@pgu.ac.ir
  • Received Date: 2021-03-31
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-07-19
  • Publish Date: 2021-10-30
  • Effects of calcium content on the performance of HZSM-5 nanoparticles of 150 nm with Si/Al ratio = 230 in the methanol to olefin conversion were investigated. The parent and modified catalysts showed their largest yields of ethylene and propylene at 490 °C and lower WHSV (= 3.3 h−1). The selectivity for propylene over HZSM-5 was 0.45 at 490 °C whereas it was promoted to 0.51 over Ca27-HZSM-5 (Ca/Al = 27). With decreasing temperature from 490 to 440, and 390 °C, the yield of propylene and ethylene remained nearly constant at 0.13−0.14 and 0.10−0.11 over Ca27-HZSM-5, respectively; more narrow than the corresponding range of yields for HZSM-5 (0.10−0.14 and 0.08−0.12). FT-IR results confirmed the formation of oxygenated and poly alkyl aromatic species in the carbon deposits. TG results indicated that oxygenate coke was formed and converted to heavier poly aromatic coke species with time. Increasing Ca in the porous structure of HZSM-5 may lead to heavier aromatic carbonaceous deposits. In general, Ca content positively affected activity through modification of the density, strength, and accessibility of Brønsted and Lewis acid sites. Long-term MTO activity test of HZSM-5 with Ca/Al = 27 showed stable performance over 100 h, although with an oscillatory feature.
  • loading
  • [1]
    MIN H-K, PARK M B. Hong SB methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites[J]. J Catal,2010,271(2):186−194. doi: 10.1016/j.jcat.2010.01.012
    [2]
    KOEMPEL H, LIEBNER W. Lurgi's methanol to propylene (MTP): Report on a successful commercialisation[R]. Stud Surf Sci Catal, 2007: 261−267.
    [3]
    COBB J. New Zealand synfuel: The Story of the World’s First Natural Gas to Gasoline Plant[M] cobb. Auckland: Horwood Publications, 1995.
    [4]
    CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today,2005,106(1/4):103−107. doi: 10.1016/j.cattod.2005.07.178
    [5]
    DING J, HUA W. Game changers of the C3 value chain: Gas, coal, and biotechnologies[J]. Chem Eng Technol,2013,36(1):83−90. doi: 10.1002/ceat.201200297
    [6]
    JOHANSSON E. Process integration study of biomass-to-methanol (via gasification) and methanol-to-olefins (MTO) processes in an existing steam cracker plant[D]. Gothenburg: Chalmers University of Technology: 2013.
    [7]
    World’s largest single-train methanol-to-olefins plant now operating[OL/EB] https://www.chemengonline.com/worlds-largest-single-train-methanol-to-olefins-plant-now-operating/#disqus_thread, 2018.
    [8]
    JAVDANI A, AHMADPOUR J, YARIPOUR F. Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review[J]. Microporous Mesoporous Mater,2019,284:443−458. doi: 10.1016/j.micromeso.2019.04.063
    [9]
    SHAO J, FU T, MA Q, MA Z, ZHANG C, LI Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons[J]. Microporous Mesoporous Mater,2019,273:122−132. doi: 10.1016/j.micromeso.2018.07.007
    [10]
    ZHANG S, GONG Y, ZHANG L, LIU Y, DOU T, XU J, DENG F. Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property[J]. Fuel Process Technol,2015,129:130−138. doi: 10.1016/j.fuproc.2014.09.006
    [11]
    SEDIGHI M, BAHRAMI H, TOWFIGHI J. Kinetic modeling formulation of the methanol to olefin process: Parameter estimation[J]. J Ind Eng Chem,2014,20(5):3108−3114. doi: 10.1016/j.jiec.2013.11.052
    [12]
    MORES D, STAVITSKI E, KOX MH, KORNATOWSKI J, OLSBYE U, WECKHUYSEN B M. Space-and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chem Eur J,2008,14(36):11320−11327. doi: 10.1002/chem.200801293
    [13]
    ZHOU J, ZHI Y, ZHANG J, LIU Z, ZHANG T, HE Y, ZHENG A, YE M, WEI Y, LIU Z. Presituated “coke”-determined mechanistic route for ethene formation in the methanol-to-olefins process on SAPO-34 catalyst[J]. J Catal,2019,377:153−162. doi: 10.1016/j.jcat.2019.06.014
    [14]
    FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun,2009,10(12):1582−1585. doi: 10.1016/j.catcom.2009.04.021
    [15]
    WU W, WEITZ E. Modification of acid sites in ZSM-5 by ion-exchange: An in-situ FTIR study[J]. Appl Surf Sci,2014,316:405−415. doi: 10.1016/j.apsusc.2014.07.194
    [16]
    YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun,2012,24:44−47. doi: 10.1016/j.catcom.2012.03.013
    [17]
    KUMAR N, LINDFORS L-E. Modification of the ZSM-5 zeolite using Ga and Zn impregnated silica fibre for the conversion of n-butane into aromatic hydrocarbons[J]. Catal Lett,1996,38(3/4):239−244. doi: 10.1007/BF00806575
    [18]
    GAYUBO AG, BENITO PL, AGUAYO AT, OLAZAR M, BILBAO J. Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons[J]. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol,1996,65(2):186−192.
    [19]
    KOOYMAN P, VAN DER WAAL P, VAN BEKKUM H. Acid dealumination of ZSM-5[J]. Zeolites,1997,18(1):50−53. doi: 10.1016/S0144-2449(96)00106-6
    [20]
    HE Y, YAN L, LIU Y, LIU Y, BAI Y, WANG J, LI F. Effect of SiO2/Al2O3 ratios of HZSM-5 zeolites on the formation of light aromatics during lignite pyrolysis[J]. Fuel Process Technol,2019,188:70−78. doi: 10.1016/j.fuproc.2019.02.004
    [21]
    LI J, HAN D, HE T, LIU G, ZI Z, WANG Z, WU J, WU J. Nanocrystal H [Fe, Al] ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline[J]. Fuel Process Technol,2019,191:104−110. doi: 10.1016/j.fuproc.2019.03.029
    [22]
    FU T, MA Z, WANG Y, SHAO J, MA Q, ZHANG C, CUI L, LI Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesize nano-ZSM-5 catalyst for MTH reaction[J]. Fuel Process Technol,2019,194:106−122.
    [23]
    JUAN S, FU T-J, CHANG J-W, WAN W-L, QI R-Y, ZHONG L. Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline[J]. J Fuel Chem Technol,2017,45(1):75−83. doi: 10.1016/S1872-5813(17)30009-9
    [24]
    NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. The preparation of nano-sized H [Zn, Al] ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous Mesoporous Mater,2011,143(2/3):435−442. doi: 10.1016/j.micromeso.2011.03.029
    [25]
    GONGWEI W, MULIANG Y, XINGCHUN W, GUOQUAN C. Process for the conversion of methanol to light olefins and catalyst used for such process: US, 5367100 [P].1994-11-22.
    [26]
    PAPARI S, MOHAMMADREZAEI A, ASADI M, GOLHOSSEINI R, NADERIFAR A. Comparison of two methods of iridium impregnation into HZSM-5 in the methanol to propylene reaction[J]. Catal Commun,2011,16(1):150−154. doi: 10.1016/j.catcom.2011.09.024
    [27]
    MOHAMMADREZAEI A, PAPARI S, ASADI M, NADERIFAR A, GOLHOSSEINI R. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst[J]. Front Chem Sci Eng,2012,6(3):253−258. doi: 10.1007/s11705-012-0902-4
    [28]
    JIANG X, SU X, BAI X, LI Y, YANG L, ZHANG K, ZHANG Y, LIU Y, WU W. Conversion of methanol to light olefins over nanosized [Fe, Al] ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance[J]. Microporous Mesoporous Mater,2018,263:243−250. doi: 10.1016/j.micromeso.2017.12.029
    [29]
    LIU J, ZHANG C, SHEN Z, HUA W, TANG Y, SHEN W, YUE Y, XU H. Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catal Commun,2009,10(11):1506−1509. doi: 10.1016/j.catcom.2009.04.004
    [30]
    AL-JARALLAH A M, EL-NAFATY U A, ABDILLAHI M M. Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes[J]. Appl Catal A: Gen,1997,154(1/2):117−127. doi: 10.1016/S0926-860X(96)00379-1
    [31]
    BUSCA G. Acidity and basicity of zeolites: A fundamental approach[J]. Microporous Mesoporous Mater,2017,254:3−16. doi: 10.1016/j.micromeso.2017.04.007
    [32]
    DAHL IM, KOLBOE S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catal Lett,1993,20(3/4):329−336. doi: 10.1007/BF00769305
    [33]
    DAHL IM, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. J Catal,1994,149(2):458−464. doi: 10.1006/jcat.1994.1312
    [34]
    DAHL IM, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. J Catal,1996,161(1):304−309. doi: 10.1006/jcat.1996.0188
    [35]
    BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal,2007,249(2):195−207. doi: 10.1016/j.jcat.2007.04.006
    [36]
    DAI W, WANG C, DYBALLA M, WU G, GUAN N, LI L, XIE Z, HUNGER M. Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34[J]. ACS Catal,2014,5(1):317−326.
    [37]
    ILIAS S, BHAN A. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds[J]. J Catal,2012,290:186−192. doi: 10.1016/j.jcat.2012.03.016
    [38]
    LIANG T, CHEN J, QIN Z, LI J, WANG P, WANG S, WANG G, DONG M, FAN W, WANG J. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting[J]. ACS Catal,2016,6(11):7311−7325. doi: 10.1021/acscatal.6b01771
    [39]
    LI J, WEI Y, CHEN J, XU S, TIAN P, YANG X, LI B, WANG J, LIU Z. Cavity controls the selectivity: Insights of confinement effects on MTO reaction[J]. ACS Catal,2014,5(2):661−665.
    [40]
    BJØRGEN M, BONINO F, KOLBOE S, LILLERUD K-P, ZECCHINA A, BORDIGA S. Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta[J]. J Am Chem Soc,2003,125(51):15863−15868. doi: 10.1021/ja037073d
    [41]
    SASSI A, WILDMAN M A, AHN H J, PRASAD P, NICHOLAS J B, HAW J F. Methylbenzene chemistry on zeolite HBeta: Multiple insights into methanol-to-olefin catalysis[J]. J Phys Chem B,2002,106(9):2294−2303. doi: 10.1021/jp013392k
    [42]
    XU S, ZHENG A, WEI Y, CHEN J, LI J, CHU Y, ZHANG M, WANG Q, ZHOU Y, WANG J. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angew Chem Int Ed,2013,52(44):11564−11568. doi: 10.1002/anie.201303586
    [43]
    LEE J, HONG U G, HWANG S, YOUN M H, SONG I K. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: Effect of lanthanum content[J]. Fuel Process Technol,2013,109:189−195. doi: 10.1016/j.fuproc.2012.10.017
    [44]
    MÜLLER S, Understanding elementary steps in methanol-to-olefins chemistry [D]. Miinchen: Technische Universität München, 2016.
    [45]
    CHU Y, YI X, LI C, SUN X, ZHENG A. Brønsted/Lewis acid sites synergistically promote the initial C−C bond formation in the MTO reaction[J]. Chem Sci,2018,9(31):6470−6479. doi: 10.1039/C8SC02302F
    [46]
    ZHANG S, ZHANG B, GAO Z, HAN Y. Ca modified ZSM-5 for high propylene selectivity from methanol[J]. React Kinet Mech Catal,2010,99(2):447−453.
    [47]
    ZHANG S, ZHANG B, GAO Z, HAN Y. Methanol to olefin over Ca-modified HZSM-5 zeolites[J]. Ind Eng Chem Res,2010,49(5):2103−2106. doi: 10.1021/ie901446m
    [48]
    YARULINA I, BAILLEUL S, PUSTOVARENKO A, MARTINEZ J R, WISPELAERE K D, HAJEK J, WECKHUYSEN B M, HOUBEN K, BALDUS M, VAN SPEYBROECK V. Suppression of the aromatic cycle in methanol-to-olefins reaction over ZSM-5 by post-synthetic modification using calcium[J]. ChemCatChem,2016,8(19):3057−3063. doi: 10.1002/cctc.201600650
    [49]
    KHEZRI H, IZADBAKHSH A, IZADPANAH A A. Promotion of the performance of La, Ce and Ca impregnated HZSM-5 nanoparticles in the MTO reaction[J]. Fuel Process Technol,2020,199:106253. doi: 10.1016/j.fuproc.2019.106253
    [50]
    CEJKA J, CORMA A, ZONES S. Zeolites and Catalysis: Synthesis, Reactions and Applications [M]. Hoboken: John Wiley & Sons, 2010.
    [51]
    CHEN H, WANG Y, MENG F, SUN C, LI H, WANG Z, GAO F, WANG X, WANG S. Aggregates of superfine ZSM-5 crystals: the effect of NaOH on the catalytic performance of methanol to propylene reaction[J]. Microporous Mesoporous Mater,2017,244:301−309. doi: 10.1016/j.micromeso.2017.02.014
    [52]
    ROSTAMIZADEH M, TAEB A. Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP)[J]. J Ind Eng Chem,2015,27:297−306. doi: 10.1016/j.jiec.2015.01.004
    [53]
    SADEGHPOUR P, HAGHIGHI M. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion[J]. Adv Powder Technol,2018,29(5):1175−1188. doi: 10.1016/j.apt.2018.02.009
    [54]
    JIA Y, WANG J, ZHANG K, FENG W, LIU S, DING C, LIU P. Nanocrystallite self-assembled hierarchical ZSM-5 zeolite microsphere for methanol to aromatics[J]. Microporous Mesoporous Mater,2017,247:103−115. doi: 10.1016/j.micromeso.2017.03.035
    [55]
    WEI Y, HE Y, ZHANG D, XU L, MENG S, LIU Z, SU B-L. Study of Mn incorporation into SAPO framework: synthesis, characterization and catalysis in chloromethane conversion to light olefins[J]. Microporous Mesoporous Mater,2006,90(1/3):188−197. doi: 10.1016/j.micromeso.2005.10.042
    [56]
    ZHANG J, ZHANG H, YANG X, HUANG Z, CAO W. Study on the deactivation and regeneration of the ZSM-5 catalyst used in methanol to olefins[J]. J Nat Gas Chem,2011,20(3):266−270. doi: 10.1016/S1003-9953(10)60183-1
    [57]
    KHATAMIAN M, OSKOUI M S, DARBANDI M. Synthesis and characterization of aluminium-free ZSM-5 type chromosilicates in different alkaline systems and investigation of their pore structures[J]. Microporous Mesoporous Mater,2013,182:50−61. doi: 10.1016/j.micromeso.2013.07.011
    [58]
    DUTTA P, ROY S, NANDI L, SAMUEL P, PILLAI SM, BHAT B, RAVINDRANATHAN M. Synthesis of lower olefins from methanol and subsequent conversion of ethylene to higher olefins via oligomerisation[J]. J Mol Catal A: Chem,2004,223(1/2):231−235. doi: 10.1016/j.molcata.2003.11.043
    [59]
    PINILLA-HERRERO I, BORFECCHIA E, HOLZINGER J, MENTZEL UV, JOENSEN F, LOMACHENKO KA, BORDIGA S, LAMBERTI C, BERLIER G, OLSBYE U. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics[J]. J Catal,2018,362:146−163. doi: 10.1016/j.jcat.2018.03.032
    [60]
    GIL B, MOKRZYCKI Ł, SULIKOWSKI B, OLEJNICZAK Z, WALAS S. Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties[J]. Catal Today,2010,152(1/4):24−32. doi: 10.1016/j.cattod.2010.01.059
    [61]
    BJØRGEN M, JOENSEN F, HOLM MS, OLSBYE U, LILLERUD K-P, SVELLE S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH[J]. Appl Catal A: Gen,2008,345(1):43−50. doi: 10.1016/j.apcata.2008.04.020
    [62]
    CAMPBELL S M, JIANG X Z, HOWE R F. Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium[J]. Microporous Mesoporous Mater,1999,29(1/2):91−108. doi: 10.1016/S1387-1811(98)00323-0
    [63]
    CONNERTON J, JOYNER R W, PADLEY M B. Characterization of the acidity of well-defined Cu-ZSM-5 catalysts using pyridine as a probe molecule[J]. J Chem Soc, Faraday Trans,1995,91(12):1841−1844. doi: 10.1039/ft9959101841
    [64]
    ZHANG M, XU S, WEI Y, LI J, WANG J, ZHANG W, GAO S, LIU Z. Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times[J]. Chin J Catal,2016,37(8):1413−1422. doi: 10.1016/S1872-2067(16)62466-X
    [65]
    BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Deposition and characteristics of coke over a H-ZSM5 zeolite-based catalyst in the MTG process[J]. Ind Eng Chem Res,1996,35(11):3991−3998. doi: 10.1021/ie950462z
    [66]
    IBÁÑEZ M, GAMERO M, RUIZ-MARTÍNEZ J, WECKHUYSEN B, AGUAYO A, BILBAO J, CASTAÑO P. Simultaneous coking and dealumination of zeolite H-ZSM-5 during the transformation of chloromethane into olefins[J]. Catal Sci Technol,2016,6(1):296−306. doi: 10.1039/C5CY00784D
    [67]
    ARSENOVA N, BLUDAU H, HAAG W, KARGE H. In situ IR spectroscopic study of the adsorption behaviour of ethylbenzene and diethylbenzenes related to ethylbenzene disproportionation over HY zeolite[J]. Microporous Mesoporous Mater,1998,23(1/2):1−10. doi: 10.1016/S1387-1811(98)00040-7
    [68]
    MÜLLER S, LIU Y, VISHNUVARTHAN M, SUN X, VAN VEEN A C, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. J Catal,2015,325:48−59. doi: 10.1016/j.jcat.2015.02.013
    [69]
    WANG S, CHEN Y, QIN Z, ZHAO T-S, FAN S, DONG M, LI J, FAN W, WANG J. Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite[J]. J Catal,2019,369:382−395. doi: 10.1016/j.jcat.2018.11.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (166) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return