Volume 50 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
HE Xiao-fei, GUO Jing, XIA Hong-qiang, ZHAO Tian-sheng. Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 72-79. doi: 10.1016/S1872-5813(21)60131-7
Citation: HE Xiao-fei, GUO Jing, XIA Hong-qiang, ZHAO Tian-sheng. Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 72-79. doi: 10.1016/S1872-5813(21)60131-7

Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene

doi: 10.1016/S1872-5813(21)60131-7
Funds:  The project was supported by the East-West Cooperation Project, Key R & D Plan of Ningxia (2017BY063)
  • Received Date: 2021-05-07
  • Rev Recd Date: 2021-06-20
  • Available Online: 2021-07-19
  • Publish Date: 2022-01-25
  • Regioselective effects of electron and steric hindrance of catalytically active intermediate HCo(CO)2L coordinated by phosphine ligands on α-hexene hydroformylation were studied based on density functional theory. Phosphine ligands have strong electron-attracting capacity that raises the stability of HCo(CO)2L. PPh3 with large steric hindrance suppresses the coordination of α-hexene with HCo(CO)2L as well as the secondary reaction of the C=C with the Co–H via the branched chain pathway. The energy barrier for the transition state containing linear chain alkyl Co intermediate is lower about 2.73 kcal/mol than that for the transition state with branched chain alkyl Co intermediate, indicating that linear chain pathway is dominant in the addition reaction. Both the electron and steric hindrance effects of phosphine ligands determines the pathway of addition reaction between the C=C of α-hexene and the Co–H. The linear chain addition is preferable that mainly produces linear chain aldehydes.
  • loading
  • [1]
    FRANKE R, SELENT D, BÖRNER A. Applied hydroformylation[J]. Chem Rev,2012,112(11):5675−5732. doi: 10.1021/cr3001803
    [2]
    ROELEN O. Production of oxygenated carbon compounds. US, 2327066[P]. 1943.
    [3]
    HEBRARD F, KALCK P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle[J]. Chem Rev,2009,109(9):4272−4282. doi: 10.1021/cr8002533
    [4]
    SZLAPA E N, HARVEY J N. Computational modelling of selectivity in cobalt-catalyzed propene hydroformylation[J]. Chem Eur J,2018,24(64):17096−17104. doi: 10.1002/chem.201803490
    [5]
    LIU Y, LI Z H, WANG B, ZHANG Y. A fine dispersed cobalt catalyst with macro-pore for hydroformylation of 1-hexene[J]. Catal Lett,2016,11(146):2252−2260.
    [6]
    HOOD D M, JOHNSON R A, CARPENTER A E, YOUNKER J M, VINYARD D J, STANLEY G G. Highly active cationic cobalt(II) hydroformylation catalysts[J]. Science,2020,367(6477):542−548. doi: 10.1126/science.aaw7742
    [7]
    HECK R F, BRESLOE D S. The reaction of cobalt hydrotetracarbonyl with olefins[J]. J Am Chem Soc,1961,83:4023−4027. doi: 10.1021/ja01480a017
    [8]
    LI P, SHEN C R, MIN J, MEI J Y, ZHENG H, HE L TIAN X X. Computational investigation of the ligand effect on the chemo/regioselectivity and reactivity of cobalt-catalysed hydroformylation[J]. Catal Sci Technol,2020,10(9):2994−3007. doi: 10.1039/C9CY02562F
    [9]
    VARELA J A, VÁZQUEZ S A, MARTÍNEZ-NÚÑEZ E. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis[J]. Chem Sci,2017,8(5):3843−3851.
    [10]
    RUSH L E, PRINGLE P G, HARVEY J N. Computational kinetics of cobalt-catalyzed alkene hydroformylation[J]. Angew Chem Int Ed,2014,53(33):8672−8676. doi: 10.1002/anie.201402115
    [11]
    FENG J H, GARLAND M. Unmodified homogeneous rhodium-catalyzed hydroformylation of styrene. The detailed kinetics of the regioselective synthesis[J]. Organometallics,1999,18(3):417−427. doi: 10.1021/om980514v
    [12]
    雷鸣, 冯文林, 徐振峰. 羰基钴催化氢甲酰化反应的理论研究[J]. 物理化学学报,2000,16(6):522−526. doi: 10.3866/PKU.WHXB20000609

    LEI Ming, FENG Wen-lin, XU Zhen-feng. Theoretical study on the mechanisms of some elementary reactions catalyzed by modified carbonyl cobalt[J]. Acta Phys-Chim Sin,2000,16(6):522−526. doi: 10.3866/PKU.WHXB20000609
    [13]
    HUO C F, LI Y W, BELLER M, JIAO H J. HCo(CO)3-catalyzed propene hydroformylation. Insight into detailed mechanism[J]. Organometallics,2003,22(23):4665−4677. doi: 10.1021/om0304863
    [14]
    BERNALES V, FROESE R D. Rhodium catalyzed hydroformylation of olefins[J]. J Comput Chem,2019,40(2):342−348. doi: 10.1002/jcc.25605
    [15]
    LEI M, FENG W L, XU Z F. Ab initio MO study of reactions mechanism for carbonyl migration of Co complex[J]. Chin Sci Bull,2000,45(13):1176−1178. doi: 10.1007/BF02886073
    [16]
    KUMAR M, CHAUDHARI R V, SUBRAMANIAM B, JACKSON T A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: Density functional calculations illuminate the role of long-range noncovalent interactions[J]. Organometallics,2014,33(16):4183−4191. doi: 10.1021/om500196g
    [17]
    PATEL P, WILSON A K. Computational chemistry considerations in catalysis: Regioselectivity and metal-ligand dissociation[J]. Catal Today,2020,358:422−429. doi: 10.1016/j.cattod.2020.07.057
    [18]
    DIAS R P, PRATES M S L, DE ALMEIDA W B, ROCHA W R. DFT study of the ligand effects on the regioselectivity of the insertion reaction of olefins in the complexes [HRh(CO)2(PR3)(L)] (R = H, F, Et, Ph, OEt, OPh, and L = propene, styrene)[J]. Int J Quantum Chem,2011,111(7/8):1280−1292. doi: 10.1002/qua.22590
    [19]
    BECKE A D. Density ‐ functional thermochemistry. III. The role of exact exchange[J]. J Chern Phys,1993,98(7):5648−5652. doi: 10.1063/1.464913
    [20]
    GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J Comput Chem,2011,32(7):1456−1465. doi: 10.1002/jcc.21759
    [21]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E. Gaussian16 Rev. B. 01[M] Wallingford, CT, 2016.
    [22]
    AULLóN G, ALVAREZ S. The [M2(CO)8] complexes of the cobalt group[J]. Eur J Inorg Chem,2001,12:3031−3038.
    [23]
    GUO J D, PHAM H D, WU Y B, ZHANG D J, WANG X T. Mechanism of cobalt-catalyzed direct aminocarbonylation of unactivated alkyl electrophiles: Outer-sphere amine substitution to form amide bond[J]. ACS Catal,2020,10(2):1520−1527. doi: 10.1021/acscatal.9b04736
    [24]
    姜淼, 杜虹, 王国庆, 严丽, 丁云杰. Co-PPh3@POPs多相催化剂氢甲酰化反应研究[J]. 煤炭学报,2020,45(4):1250−1258.

    JIANG Miao, DU Hong, WANG Guo-qing, YAN Li, DING Yun-jie. Co-PPh3@POPs heterogeneous catalysts for hydroformylation of olefins[J]. J China Coal Soc,2020,45(4):1250−1258.
    [25]
    GRIMA J P, CHOPLIN F, KAUFMANN G. Theoretical study of the hydroformyltaion reaction mechanism[J]. J Organomet Chem,1977,129:221−237. doi: 10.1016/S0022-328X(00)92495-1
    [26]
    BIRBECK J M, HAYNES A, ADAMS H, DAMOERNSE L, OTTO S. Ligand effects on reactivity of cobalt acyl complexes[J]. ACS Catal,2012,2(12):2512−2523. doi: 10.1021/cs300589n
    [27]
    HUO C F, ZENG T, LI Y W, BELLER M, JIAO H J. Switching end-on into side-on C≡N coordination: A computational approach[J]. Organometallics,2005,24(24):6037−6042. doi: 10.1021/om0505054
    [28]
    FALIVENE L, CREDENDINO R, POATER A, PETTA A, SERRA L, OLIVA R, SCARANO V, CAVALLO L. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps[J]. Organometallics,2016,35(13):2286−2293. doi: 10.1021/acs.organomet.6b00371
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (330) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return