Volume 50 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
QU Xuan, WANG Qin-fen, YAN Shuai, FENG Jun, ZHANG Jian-shu, ZHANG Rong, BI Ji-cheng. The behavior of the different catalysts for model carbon hydrogasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 1-10. doi: 10.1016/S1872-5813(21)60136-6
Citation: QU Xuan, WANG Qin-fen, YAN Shuai, FENG Jun, ZHANG Jian-shu, ZHANG Rong, BI Ji-cheng. The behavior of the different catalysts for model carbon hydrogasification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 1-10. doi: 10.1016/S1872-5813(21)60136-6

The behavior of the different catalysts for model carbon hydrogasification

doi: 10.1016/S1872-5813(21)60136-6
Funds:  The project was supported by NSFC-Xinjiang Joint Fund (U1703253), Young Talent Fund of State Key Laboratory of Coal Conversion (2021BWZ001), Natural Science Foundation of Shanxi Province (201801D121287)
  • Received Date: 2021-06-11
  • Rev Recd Date: 2021-07-02
  • Available Online: 2021-08-10
  • Publish Date: 2022-01-25
  • The catalytic hydrogasification of activated carbon/bituminous char/anthracite char with the different catalysts were performed in a pressurized thermogravimetry analysis (PTGA). The GC, BET were used to characterize the physical structure and chemical reaction process of carbon. The function principle of Co to the carbon-hydrogen reaction was preliminarily obtained. The results showed that the catalytic activity of transition metals (Fe, Co, Ni) was significantly better than that of alkali metals and alkaline earth metals during the process of activated carbon hydrogasification. There were two catalytic zones of low temperature (600−750 ℃) and high temperature (> 800 ℃) in the catalytic process. The emergence of the low temperature catalytic zone could be attributed to the interaction between the transition metal oxides and carbon. The transition metal was embedded in carbon layer structure during the activated carbon hydrogasification, then parts of carbon structure was activated, resulting in the cleavage of carbon-carbon bonds. The adequate active hydrogen could be supplied by Co at 850 ℃ when the pressure was beyond 1 MPa. Briefly, the reaction temperature was the crucial factor for the cleavage of carbon-carbon bonds. The model carbon with higher specific surface area and weaker carbon structure could be converted efficiently even with lower loading amount of catalyst.
  • loading
  • [1]
    严帅, 夏梓洪, 陈彩霞, 曲旋, 毕继诚. 煤催化加氢气化研究进展[J]. 洁净煤技术,2021,27(1):60−72.

    YAN Shuai, XIA Zi-hong, CHEN Cai-xia, QU Xuan, BI Ji-cheng. Research progress on the technology of coal catalytic hydrogasification[J]. Clean Coal Technol,2021,27(1):60−72.
    [2]
    TAMAI Y, WATANABE H, TOMITA A. Catalytic gasification of carbon with steam carbon-dioxide and hydrogen[J]. Carbon,1977,15(2):103−106. doi: 10.1016/0008-6223(77)90024-0
    [3]
    LEE S H, LEE J G, KIM J H, CHOI Y C. Hydrogasification characteristics of bituminous coals in an entrained-flow hydrogasifier[J]. Fuel,2006,85(5/6):803−806. doi: 10.1016/j.fuel.2005.08.039
    [4]
    TOMITA A, HIGASHIYAMA K, TAMAI Y. Scanning electron-microscopic study on the catalytic gasification of coal[J]. Fuel,1981,60(2):103−114. doi: 10.1016/0016-2361(81)90003-X
    [5]
    YUAN S F, ZHANG N, QU X, BI J C, CAO Q, WANG J L. Promoted catalysis of calcium on the hydrogasification reactivity of iron-loaded subbituminous coal[J]. Fuel,2017,200:153−161. doi: 10.1016/j.fuel.2017.03.066
    [6]
    HAGA T, NISHIYAMA Y. Enhancements in nickel-catalyzed hydrogasification of carbon by surface treatments[J]. Carbon,1983,21(3):219−223. doi: 10.1016/0008-6223(83)90083-0
    [7]
    SUZUKI T, IWASAKI J, TANKA K, OKAZAKI N, FUNAKI M, YAMADA T. Influence of calcium on the catalytic behavior of nickel in low temperature hydrogasification of wood char[J]. Fuel,1998,77(7):763−767. doi: 10.1016/S0016-2361(97)00240-8
    [8]
    JIANG J T, LIU Q Y, LIU Z Y. Superior catalytic effect of calcium oxide on the hydrogasification of char for CH4[J]. Fuel,2016,180:737−742. doi: 10.1016/j.fuel.2016.04.093
    [9]
    MATSUMOTO S, SAKAGAMI S. Catalytic gasification activity of iron enhanced by spilt-over hydrogen[J]. Stud Surf Sci Catal,1993,77:409−412.
    [10]
    HAGA T, NISHIYAMA Y. Promotion of iron-group catalysts by a calcium salt in hydrogasification of coal chars[J]. Ind Eng Chem Res,1989,28(6):724−728. doi: 10.1021/ie00090a013
    [11]
    LIU X H, XIONG B, HUANG X H, DING H R, ZHENG Y, LIU Z H, ZHENG C G. Effect of catalysts on char structural evolution during hydrogasification under high pressure[J]. Fuel,2017,188:474−482. doi: 10.1016/j.fuel.2016.10.053
    [12]
    MATSUMOTO S. Catalyzed hydrogasification of Yallourn char in the presence of supported hydrogenation nickel catalyst[J]. Energy Fuels,1991,5(1):60−63. doi: 10.1021/ef00025a009
    [13]
    NISHIYAMA Y. Catalytic behaviour of iron and nickel in coal gasification[J]. Fuel,1986,65(10):1404−1409. doi: 10.1016/0016-2361(86)90114-6
    [14]
    HONG B Q, WANG X J, ZHOU Z J, YU G S. A comparison of the gas-product-release characteristics from coal pyrolysis and hydrogasification[J]. Energy Technol,2013,1:449−456. doi: 10.1002/ente.201300052
    [15]
    JIANG J T, LIU Z Y, LIU Q Y. Synergetic catalysis of calcium oxide and iron in hydrogasification of char[J]. Energy Fuels,2017,31:198−204. doi: 10.1021/acs.energyfuels.6b02026
    [16]
    战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验研究[J]. 燃料化学学报,2012,40(1):8−14. doi: 10.3969/j.issn.0253-2409.2012.01.002

    ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. J Fuel Chem Technol,2012,40(1):8−14. doi: 10.3969/j.issn.0253-2409.2012.01.002
    [17]
    张峰, 孙浩, 张建树, 严帅, 曲旋, 张荣, 毕继诚. Fe的分散程度对煤焦催化加氢气化的影响[J]. 燃料化学学报,2019,47(4):402−410.

    ZHANG Feng, SUN Hao, ZHANG Jian-shu, YAN Shuai, QU Xuan, ZHANG Rong, BI Ji-cheng. Effect of dispersion degree of iron on catalytic hydrogasification of coal char[J]. J Fuel Chem Technol,2019,47(4):402−410.
    [18]
    HAGA T, NISHIYAMA Y. Promotion of iron-group catalysts by a calcium salt in hydrogasification of carbons at elevated pressures[J]. Ind Eng Chem Res,1987,26(6):1202−1206. doi: 10.1021/ie00066a023
    [19]
    WU X T, TANG J, WANG J. A new active site/intermediate kinetic model for K2CO3-catalyzed steam gasification of ash-free coal char[J]. Fuel,2016,165:59−67. doi: 10.1016/j.fuel.2015.10.034
    [20]
    ZOHEIDI H, MILLER D J. Role of oxygen surface groups in catalysis of hydrogasification of carbon black by potassium carbonate[J]. Carbon,1987,25(6):809−819. doi: 10.1016/0008-6223(87)90156-4
    [21]
    OHTSUKA Y, TAMAI Y, TOMITA A. Iron-catalyzed gasification of brown coal at low temperatures[J]. Energy Fuels,1987,1(1):32−36. doi: 10.1021/ef00001a006
    [22]
    TOMITA A, TAMAI Y. Hydrogenation of carbons catalyzed by transition metals[J]. J Catal,1972,27(2):293−300. doi: 10.1016/0021-9517(72)90271-0
    [23]
    HAGA T, OZAKI J I, SUZUKI K, NISHIYAMA Y. Role of MgO and CaO promoters in Ni-catalyzed hydrogenation reactions of CO and carbon[J]. J Catal,1992,134(1):107−117. doi: 10.1016/0021-9517(92)90214-3
    [24]
    YAN S, ZHANG J S, YAN X Q, PAN D F, REN H, QU X. Catalytic coal hydrogasification by cobalt-calcium catalyst in a pressurized fluidized bed: role of hydropyrolysis and catalysis Process[J]. J Anal Appl Pyrolysis,2018,135:251−259. doi: 10.1016/j.jaap.2018.08.028
    [25]
    严帅. 加压流化床煤催化加氢气化的基础研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2019.

    YAN Shuai. Fundamental study on coal catalytic hydrogasification in a pressurized fluidized bed[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2019.
    [26]
    YUAN S F, QU X, ZHANG R, BI J C. Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal[J]. Fuel,2015,147:133−140. doi: 10.1016/j.fuel.2015.01.004
    [27]
    YAN S, BI J C, QU X. The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed[J]. Appl Energy,2017,206:401−412. doi: 10.1016/j.apenergy.2017.08.189
    [28]
    SILVA I F, MCKEE D W, LOBO L S. A kinetic and in situ XRD study of carbon reactions catalyzed by nickel, cobalt, molybdenum, and their mixtures[J]. J Catal,1997,170(1):54−61. doi: 10.1006/jcat.1997.1723
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (393) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return