Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Ke-wen, CHEN Yi-fei, HU Ting-ping, LÜ Xi-mei. Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1684-1692. doi: 10.1016/S1872-5813(21)60139-1
Citation: ZHANG Ke-wen, CHEN Yi-fei, HU Ting-ping, LÜ Xi-mei. Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1684-1692. doi: 10.1016/S1872-5813(21)60139-1

Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst

doi: 10.1016/S1872-5813(21)60139-1
Funds:  The proiect was supporteed by the National Natural Science Foundation of China (21536008)
  • Received Date: 2021-05-31
  • Rev Recd Date: 2021-07-20
  • Available Online: 2021-08-10
  • Publish Date: 2021-11-30
  • In this paper, the synthesis of methanol in CO2 hydrogenation on NiO supported In2O3(110) defect surface was studied with the aid of density functional theory (DFT) calculation. Two pathways for methanol synthesis including HCOO route and reverse water gas (RWGS) route were analyzed. The reaction energy and activation energy barrier of each elementary reaction in these two routes were calculated. The results show that the existence of NiO support can enhance the adsorption of CO2 on In2O3 catalyst and promote the generation of methanol via the HCOO route. In HCOO route, the hydrogenation of HCOO to H2COO is the rate-determining step, and it requires to overcome the activation energy barrier of 1.66 eV. The NiO-supported In2O3(110) defect surface exhibits a promoting effect on the hydrogenation of CO2 to methanol via HCOO route, which, hence, improving the efficiency of methanol formation.
  • loading
  • [1]
    叶静云. 二氧化碳加氢In2O3系催化剂理论与实验研究[D]. 天津: 天津大学, 2014.

    YE Jing-yun. Theoretical and experimental studies of CO2 hydrogenation on the In2O3 based catalyst[D]. Tianjin: Tianjin University, 2014.
    [2]
    JADHAV S G, VAIDYA P D, BHANAGE B M, JOSHI J B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies[J]. Chem Eng Res Des,2014,92(11):2557−2567. doi: 10.1016/j.cherd.2014.03.005
    [3]
    MARTINEZ-SUAREZ L, SIEMER N, FRENZEL J, MARX D. Reaction network of methanol synthesis over Cu/ZnO nanocatalysts[J]. ACS Catal,2015,5(7):4201−4218. doi: 10.1021/acscatal.5b00442
    [4]
    YANG Y, EVANS J, RODRIGUEZ J A, WHITE M G, PING L. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001)[J]. Phys Chem Chem Phys,2010,12(33):9909−9917. doi: 10.1039/c001484b
    [5]
    ZHAO Y F, YONG Y, MIMS C, PEDEN C, LI J, MEI D H. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. J Catal,2011,281(2):199−211. doi: 10.1016/j.jcat.2011.04.012
    [6]
    DUBOIS J L, SAYAMA K, ARAKAWA H. CO2 hydrogenation over carbide catalysts[J]. Chem Lett,1992,21(1):5−8.
    [7]
    SOLYMOSI F, OSZKO A, BANSAGI T, TOLMACSOV P. Adsorption and reaction of CO2 on Mo2C catalyst[J]. J Phys Chem B,2002,106(37):9613−9618. doi: 10.1021/jp0203696
    [8]
    POROSOFF M D, YANG X, BOSCOBOINIK J A, CHEN J G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angew Chem Int Ed,2014,53(26):6705−6709. doi: 10.1002/anie.201404109
    [9]
    LIN S, YE X X. First-principle insights into the catalytic role of indium oxide in methanol steam reforming[J]. Chin J Catal,2013,34(10):1855−1860. doi: 10.1016/S1872-2067(12)60662-7
    [10]
    韩睿, 唐家鹏, 何平笙, 郭新宇. CO2制备甲醇催化剂研究进展[J]. 工业催化,2015,23(9):677−681. doi: 10.3969/j.issn.1008-1143.2015.09.004

    HAN Rui, TANG Jia-peng, HE Ping-sheng, GUO Xin-yu. Recent advances in the catalysts for preparation of methanol from CO2[J]. Ind Catal,2015,23(9):677−681. doi: 10.3969/j.issn.1008-1143.2015.09.004
    [11]
    OLIVER, MARTIN, ANTONIO, J, MARTIN, CECILIA, MONDELLI. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed,2016,55(21):6261−6265. doi: 10.1002/anie.201600943
    [12]
    LIU C J, SUN K H, GE Q F, WANG Z Y, RUI N. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy[J]. Appl Catal B: Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069
    [13]
    GARCIA-TRENCO A, REGOUTZ A, WHITE E R, PAYNE D J, SHAFFER M, WILLIAMS C K. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol[J]. Appl Catal B: Environ,2018,220:9−18. doi: 10.1016/j.apcatb.2017.07.069
    [14]
    ZHANG, M H, DOU, M B, YU Y Z. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation[J]. Appl Surf Sci,2018,433(1):780−789.
    [15]
    YE J Y, LIU C J, GE Q F. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. J Phys Chem C,2012,116(14):7817−7825. doi: 10.1021/jp3004773
    [16]
    YE J Y, LIU C J, MEI D H, GE Q F. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT Study[J]. ACS Catal,2013,3(6):1296−1306. doi: 10.1021/cs400132a
    [17]
    YE J Y, LIU C J, MEI D H, GE Q F. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study[J]. J Catal,2014,317:44−53. doi: 10.1016/j.jcat.2014.06.002
    [18]
    OTSUKA K, YASUI T, MORIKAWA A. Production of CO from CO2 by reduced indium oxide[J]. J Chem Soc,1982,78(11):3281−3286.
    [19]
    BIELZ T, LORENZ H, AMANN P, KLOOTZER B, PENNER S. Water-gas shift and formaldehyde reforming activity determined by defect chemistry of polycrystalline In2O3[J]. J Phys Chem C,2011,115(14):6622−6628. doi: 10.1021/jp111739m
    [20]
    SUN Q D, YE J Y, LIU C J, GE Q F. In2O3 as a promising catalyst for CO2 utilization: A case study with reverse water gas shift over In2O3[J]. Greenh Gases,2014,4(1):140−144. doi: 10.1002/ghg.1401
    [21]
    SUN K H, FAN Z G, YE J Y, YAN J M, GE Q F, LI Y N, HE W, YANG W J, LIU C J. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. J CO2 Util,2015,12:1−6. doi: 10.1016/j.jcou.2015.09.002
    [22]
    YE J Y, LIU C J, GE Q F. A DFT study of methanol dehydrogenation on the PdIn(110) surface[J]. Phys Chem Chem Phys,2012,14(48):16660−16667. doi: 10.1039/c2cp42183f
    [23]
    赵丽丽. 二氧化锆负载镍催化剂催化顺酐选择加氢性能研究[D]. 太原: 山西大学, 2019.

    ZHAO Li-li. The study on selective hydrogenation of malefic anhydride catalyzed by ZrO2 supported nickel catalyst[D]. Taiyuan: Shanxi University, 2019.
    [24]
    梁二艳, 张因, 赵丽丽, 徐亚琳, 赵永祥. 甲醇热制备四方相ZrO2及其负载镍催化剂的顺酐加氢性能[J]. 化工学报,2017,68(6):2352−2358.

    LIANG Er-yan, ZHANG Yin, ZHAO Li-li, XU Ya-lin, ZHAO Yong-xiang. Selective hydrogenation of malefic anhydride over Ni/ZrO2 catalysts with ZrO2 prepared by methanol thermal method[J]. CIESC J,2017,68(6):2352−2358.
    [25]
    孟志宇, 张因, 赵丽丽, 张鸿喜, 赵永祥. 不同晶型TiO2负载镍催化剂催化顺酐液相加氢[J]. 高等学校化学学报,2015,36(9):1779−1785.

    MENG Zhi-yu, ZHANG Yin, ZHAO Li-li, ZHANG Hong-xi, ZHAO Yong-xiang. Different crystalline TiO2 supported nickel catalysts catalyzed coordinative liquid phase hydrogenation[J]. Chem J Chin Univ,2015,36(9):1779−1785.
    [26]
    梁志铭, 聂小娃, 郭新闻, 宋春山. 镍掺杂对Fe催化剂上CO2加氢制烃影响的理论计算研究[J]. 分子催化,2020,34(4):293−303.

    LIANG Zhi-ming, NIE Xiao-wa, GUO Xin-wen, SONG Chun-shan. Theoretical calculation study on the effect of nickel doping on the hydrogenation of CO2 to hydrocarbons over Fe catalysts[J]. J Mol Catal,2020,34(4):293−303.
    [27]
    冯刚, 肖祈, 王大山, 周健, 卢章辉, 张荣斌. 第一性原理研究镍改性ZSM-12分子筛的酸性(英文)[J]. 燃料化学学报,2020,48(6):704−712. doi: 10.3969/j.issn.0253-2409.2020.06.009

    FENG Gang, XIAO Qi, WANG Da-shan, ZHOU Jian, LU Zhang-hu, ZHANG Rong-bin. Acid properties of Ni-modified ZSM-12: A first-principles study(English)[J]. J Fuel Chem Technol,2020,48(6):704−712. doi: 10.3969/j.issn.0253-2409.2020.06.009
    [28]
    JIA X, SUN K, WANG J, LIU C. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J Energy Chem,2020,50(11):409−415.
    [29]
    PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phy Rev B,1992,46(11):6671−6687. doi: 10.1103/PhysRevB.46.6671
    [30]
    DOU M B, ZHANG M H, CHEN Y F, YU Y Z. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst[J]. Surf Sci,2018,672−673:7−12. doi: 10.1016/j.susc.2018.02.013
    [31]
    ZHANG M H, DOU M B, YU Y Z. DFT study of CO2 conversion on InZr3(110) surface[J]. Phys Chem Chem Phys,2017,19(42):28917−28927. doi: 10.1039/C7CP03859C
    [32]
    MAREZIO M. Refinement of the crystal structure of In2O3 at two wavelengths[J]. Acta Cryst,1966,20(6):723−728. doi: 10.1107/S0365110X66001749
    [33]
    薛继龙, 方镭, 罗伟, 孟跃, 陈涛, 夏盛杰, 倪哲明. Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究[J]. 燃料化学学报,2019,47(6):688−696. doi: 10.3969/j.issn.0253-2409.2019.06.006

    XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. J Fuel Chem Technol,2019,47(6):688−696. doi: 10.3969/j.issn.0253-2409.2019.06.006
    [34]
    赵炳坤, 陈镇, 吴玉龙, 杨明德, 封伟. 甲氧基在Rh(111)表面吸附的密度泛函研究[J]. 燃料化学学报,2010,38(3):365−369. doi: 10.3969/j.issn.0253-2409.2010.03.019

    ZHAO Bing-kun, CHEN Zhen, WU Yu-long, YANG Ming-de, FENG Wei. A DFT study on the adsorption of methoxy on the Rh(111) surface[J]. J Fuel Chem Technol,2010,38(3):365−369. doi: 10.3969/j.issn.0253-2409.2010.03.019
    [35]
    厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006

    LI Zhi-peng, NIN Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHEN Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006
    [36]
    HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem Phys Lett,1977,49(2):225−232. doi: 10.1016/0009-2614(77)80574-5
    [37]
    郭秋婷. 二氧化碳加氢氧化铟催化剂实验研究[D]. 天津: 天津大学, 2015.

    GUO Qiu-ting. CO2 hydrogenation over In2O3[D]. Tianjin: Tianjin University, 2015.
    [38]
    LIU R Q. Adsorption and dissociation of H2O on Au(111) surface: A DFT study[J]. Comput Theor Chem,2013,1019:141−145. doi: 10.1016/j.comptc.2013.07.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (652) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return