Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Lima F. S., Fontes E. H., Nandenha J., de Souza R.F.B., Neto A.O.. Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1540-1548. doi: 10.1016/S1872-5813(21)60141-X
Citation: Lima F. S., Fontes E. H., Nandenha J., de Souza R.F.B., Neto A.O.. Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1540-1548. doi: 10.1016/S1872-5813(21)60141-X

Addition of bismuth to Pt and Pd for electric power generation with selective cogeneration of acetate from ethanol in a fuel cell type reactor

doi: 10.1016/S1872-5813(21)60141-X
Funds:  The project was supported by the CAPES, FAPESP (2017/11937-4) and CNPq (302709/2020-7)
More Information
  • Corresponding author: E-mail: aolivei@ipen.br
  • Received Date: 2021-03-18
  • Rev Recd Date: 2021-07-13
  • Available Online: 2021-08-17
  • Publish Date: 2021-10-30
  • Pt/C, PtBi(95∶5)/C, Pd/C, and PdBi(95∶5)/C were synthesized by the sodium borohydride reducing method to produce metal nanoparticles with advanced electronic properties to enhance the ethanol oxidation reaction (EOR) mechanism. The Transmission Electron Microscopy (TEM) images and X-ray photoelectron spectroscopy (XPS) showed that a small Bi content does not affect the nanoparticle size PdBi/C; in contrast, it does affect the PtBi ones. The X-ray diffraction analysis revealed a lattice parameter modification by Bi dope in Pt crystalline structure. Furthermore, the ATR-FTIR results indicated the suppression of carbonate formation and increment in acetate production. The results of polarization and power density curves on DEFC, the material PtBi/C presented the more high power density, almost six times bigger than Pt/C. PtBi/C also has the highest current density (44 mW/cm2) and the lowest onset potential (−0.6 V) in linear sweep voltammetry experiments. It also has the highest final current density in current-time experiments. Hence, PtBi/C is a very promising electrocatalyst for DEFC.
  • loading
  • [1]
    FONTES E H, RAMOS C E D, NANDENHA J, PIASENTIN R M, NETO A O, LANDERS R. Structural analysis of PdRh/C and PdSn/C and its use as electrocatalysts for ethanol oxidation in alkaline medium[J]. Int J Hydrogen Energy,2019,44(2):937−951. doi: 10.1016/j.ijhydene.2018.11.049
    [2]
    NETO A O, NANDENHA J, ASSUMPÇÃO M H M T, LINARDI M, SPINACÉ E V, DE SOUZA R F B. In situ spectroscopy studies of ethanol oxidation reaction using a single fuel cell/ATR-FTIR setup[J]. Int J Hydrogen Energy,2013,38(25):10585−10591. doi: 10.1016/j.ijhydene.2013.06.026
    [3]
    ALMEIDA C V S, ALMAGRO L E, VALÉRIO NETO E S, CORO J, SUÁREZ M, EGUILUZ K I B, SALAZAR-BANDA G R. Polyhydroxylated fullerenes: An efficient support for Pt electrocatalysts toward ethanol oxidation[J]. J Electroanal Chem,2020,878:114663. doi: 10.1016/j.jelechem.2020.114663
    [4]
    QIAN Q-Y, YANG C, ZHOU Y-G, YANG S, XIA X-H. Efficient C–C bond cleavage in ethanol electrooxidation on porous Pt catalysts[J]. J Electroanal Chem,2011,660(1):57−63. doi: 10.1016/j.jelechem.2011.06.005
    [5]
    WANG F, WANG K, AN C, AN C, ZHANG W. PtPdCu nanodendrites enable complete ethanol oxidation by enhancing CC bond cleavage[J]. J Colloid and Interface Sci,2020,571:118−125. doi: 10.1016/j.jcis.2020.03.039
    [6]
    PIWOWAR J, LEWERA A. On the absence of a beneficial role of Rh towards CC bond cleavage during low temperature ethanol electrooxidation on PtRh nanoalloys[J]. J Electroanal Chem,2020,875:114229.
    [7]
    LAI S C S, KOPER M T M. Ethanol electro-oxidation on platinum in alkaline media[J]. Phys Chem Chem Phy,2009,11(44):10446−10456. doi: 10.1039/b913170a
    [8]
    FARIAS M J S, CHEUQUEPÁN W, TANAKA A A, FELIU J M. Unraveling the nature of active sites in ethanol electro-oxidation by site-specific marking of a Pt catalyst with isotope-labeled 13CO[J]. J Phys Chem Let,2018,9(6):1206−1210. doi: 10.1021/acs.jpclett.8b00030
    [9]
    FERRE-VILAPLANA A, BUSO-ROGERO C, FELIU J M, HERRERO E. Cleavage of the C–C bond in the ethanol oxidation reaction on platinum. Insight from experiments and calculations[J]. J Phys Chem C,2016,120(21):11590−11597. doi: 10.1021/acs.jpcc.6b03117
    [10]
    MARKOVIC N M, GASTEIGER H A, ROSS P N, JIANG X, VILLEGAS I, WEAVER M J. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces[J]. Electrochim Acta,1995,40(1):91−98. doi: 10.1016/0013-4686(94)00241-R
    [11]
    LIU J, CAO J, HUANG Q, LI X, ZOU Z, YANG H. Methanol oxidation on carbon-supported Pt-Ru-Ni ternary nanoparticle electrocatalysts[J]. J Power Sources,2008,175(1):159−165. doi: 10.1016/j.jpowsour.2007.08.100
    [12]
    DE SOUZA R F B, SILVA J C M, ASSUMPÇÃO M H M T, NETO A O, SANTOS M C. Ethanol oxidation reaction using PtSn/C + Ce/C Electrocatalysts: Aspects of ceria contribution[J]. Electrochim Acta,2014,117:292−298. doi: 10.1016/j.electacta.2013.11.129
    [13]
    MESSA MOREIRA T F, NETO S A, LEMOINE C, KOKOH K B, MORAIS C, NAPPORN T WOLIVI P. Rhodium effects on Pt anode materials in a direct alkaline ethanol fuel cell[J]. RSC Adv,2020,10(58):35310−35317. doi: 10.1039/D0RA06570F
    [14]
    LIMA F H B, PROFETI D, LIZCANO-VALBUENA W H, TICIANELLI E A, GONZALEZ E R. Carbon-dispersed Pt-Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature[J]. J Electroanal Chem,2008,617(2):121−129. doi: 10.1016/j.jelechem.2008.01.024
    [15]
    FONTES E H, DA SILVA S G, SPINACE E V, NETO A O, DE SOUZA R F B. In situ ATR-FTIR studies of ethanol electro-oxidation in alkaline medium on PtRh/C electrocatalyst prepared by an alcohol reduction Process[J]. Electrocatal,2016,7(4):297−304. doi: 10.1007/s12678-016-0308-z
    [16]
    PALMA L M, ALMEIDA T S, DE ANDRADE A R. Comparative study of catalyst effect on ethanol electrooxidation in alkaline medium: Pt- and Pd-based catalysts containing Sn and Ru[J]. J Electroanal Chem,2020,878:114592. doi: 10.1016/j.jelechem.2020.114592
    [17]
    TUSI M M, POLANCO N S O, DA SILVA S G, SPINACÉ E V, NETO A O. The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium[J]. Electrochem Commun,2011,13(2):143−146. doi: 10.1016/j.elecom.2010.11.035
    [18]
    KOUAMÉ B S R, BARANTON S, BRAULT P, CANAFF C, CHAMORRO-CORAL W, CAILLARD A, DE OLIVEIRA VIGIER K, COUTANCEAU C. Insights on the unique electro-catalytic behavior of PtBi/C materials[J]. Electrochim Acta,2020,329:135161. doi: 10.1016/j.electacta.2019.135161
    [19]
    NETO A O, TUSI M M, DE OLIVEIRA POLANCO N S, DA SILVA S G, COELHO DOS SANTOS M, SPINACÉ E V. PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium[J]. Int J Hydrogen Energy,2011,36(17):10522−10526. doi: 10.1016/j.ijhydene.2011.05.154
    [20]
    DU W, MACKENZIE K E, MILANO D F, DESKINS N A, SU D, TENG X. Palladium–tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium[J]. ACS Catal,2012,2(2):287−297. doi: 10.1021/cs2005955
    [21]
    OTTONI C A, DA SILVA S G, DE SOUZA R F B, NETO A O. PtAu electrocatalyst for glycerol oxidation reaction using a ATR-FTIR/single direct alkaline glycerol/air cell in situ study[J]. Electrocatal,2016,7(1):22−32. doi: 10.1007/s12678-015-0277-7
    [22]
    YOVANOVICH M, PIASENTIN R M, AYOUB J M S, NANDENHA J, FONTES E H, DE SOUZA R F B, BUZZO G S, SILVA J C M, SPINACÉ E V, ASSUMPÇÃO M H M T, NETO A O, DA SILVA S G. PtBi/C electrocatalysts for formic acid electro-oxidation in acid and alkaline electrolyte[J]. Int J Electrochem Sci,2015,10(6):4801−4811.
    [23]
    NING X, ZHOU X, LUO J, MA L, XU X, ZHAN L. Effects of the synthesis method and promoter content on bismuth-modified platinum catalysts in the electro-oxidation of glycerol and formic acid[J]. ChemElectroChem,2019,6(6):1870−1877. doi: 10.1002/celc.201900043
    [24]
    CAI J, HUANG Y, GUO Y. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium[J]. Electrochim Acta,2013,99:22−29. doi: 10.1016/j.electacta.2013.03.059
    [25]
    KIM H J, CHOI S M, NAM S H, SEO M H, KIM W B. Carbon-supported PtNi catalysts for electrooxidation of cyclohexane to benzene over polymer electrolyte fuel cells[J]. Catal Today,2009,146(1/2):9−14. doi: 10.1016/j.cattod.2008.11.012
    [26]
    KIM H J, CHOI S M, NAM S H, SEO M H, KIM W B. Effect of Rh content on carbon-supported PtRh catalysts for dehydrogenative electrooxidation of cyclohexane to benzene over polymer electrolyte membrane fuel cell[J]. Appl Catal A: Gen,2009,352(1/2):145−151.
    [27]
    CAI R, SONG S, JI B, YANG W, XIN Q, SUN G, DOUVARTZIDES S, TSIAKARAS P. Benzene electro-oxidation in a PEMFC for phenol and electricity cogeneration[J]. Appl Catal B: Environ,2005,61(3/4):184−191.
    [28]
    BIANCHINI C, BAMBAGIONI V, FILIPPI J, MARCHIONNI A, VIZZA F, BERT P, TAMPUCCI A. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells[J]. Electrochem Commun,2009,11(5):1077−1080. doi: 10.1016/j.elecom.2009.03.022
    [29]
    NANDENHA J, PIASENTIN R M, SILVA L M G, FONTES E H, NETO A O, DE SOUZA R F B. Partial oxidation of methane and generation of electricity using a PEMFC[J]. Ionics,2019,25(10):5077−5082. doi: 10.1007/s11581-019-03186-z
    [30]
    BUZZO G S, RODRIGUES A C B, DE SOUZA R F B, SILVA J C M, BASTOS E L, SPINACÉ E V, NETO A O, ASSUMPÇÃO M H M T. Synthesis of hydroquinone with co-generation of electricity from phenol aqueous solution in a proton exchange membrane fuel cell reactor[J]. Catal Commun,2015,59:113−115. doi: 10.1016/j.catcom.2014.09.048
    [31]
    SANTOS M C L, NUNES L C, SILVA L M G, RAMOS A S, FONSECA F C, DE SOUZA R F B, NETO A O. Direct Alkaline Anion Exchange Membrane Fuel Cell to Converting Methane into Methanol[J]. ChemistrySelect,2019,4(39):11430−11434. doi: 10.1002/slct.201902421
    [32]
    SOUZA F M, NANDENHA J, BATISTA B L, OLIVEIRA V H A, PINHEIRO V S, PARREIRA L S, NETO A O, SANTO M C. PdxNby electrocatalysts for DEFC in alkaline medium: Stability, selectivity and mechanism for EOR[J]. Int J Hydrogen Energy,2018,43(9):4505−4516. doi: 10.1016/j.ijhydene.2018.01.058
    [33]
    DE CARMARGO V F, FONTES E H, NANDENHA J, DE SOUZA R F B, NETO A O. High activity of Pt-Rh supported on C-ITO for ethanol oxidation in alkaline medium[J]. Res Chem Intermediates,2020,46(2):1555−1570. doi: 10.1007/s11164-019-04050-5
    [34]
    RAMOS A S, SANTOS M C L, GODOI C M, DE QUEIROZ L C, NANDENHA J, FONTES E H, BRITO W R, MACHADO M B, NETO A O, DE SOUZA R F B. High CO tolerance of Pt nanoparticles synthesized by sodium borohydride in a time-domain NMR spectrometer[J]. Int J Hydrogen Energy,2020,45(43):22973−22978. doi: 10.1016/j.ijhydene.2020.06.105
    [35]
    NILSSON A, PETTERSSON L G M. Chapter 2 - Adsorbate Electronic Structure and Bonding on Metal Surfaces. In: Nilsson A, Pettersson LGM, Nørskov JK, editors. Chemical Bonding at Surfaces and Interfaces [M]. Amsterdam: Elsevier; 2008: 57−142.
    [36]
    FARNOOD A, RANJBAR M, SALAMATI H. Localized surface plasmon resonance (LSPR) detection of hydrogen gas by Pd2+/Au core/shell like colloidal nanoparticles[J]. Int J Hydrogen Energy,2020,45(1):1158−1169. doi: 10.1016/j.ijhydene.2019.10.168
    [37]
    LIU J, LI D, LI R, WANG Y, WANG Y, FAN C. PtO/Pt4+-BiOCl with enhanced photocatalytic activity: Insight into the defect-filled mechanism[J]. Chem Eng J,2020,395:123954. doi: 10.1016/j.cej.2019.123954
    [38]
    MOTIN A M, HAUNOLD T, BUKHTIYAROV A V, BERA A, RAMESHAN C, RUPPRECHTER G. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies[J]. Appl Surf Sci,2018,440:680−687. doi: 10.1016/j.apsusc.2018.01.148
    [39]
    ANTOLINI E, GONZALEZ E R. Alkaline direct alcohol fuel cells[J]. J Power Sources,2010,195(11):3431−3450. doi: 10.1016/j.jpowsour.2009.11.145
    [40]
    FANG X, WANG L, SHEN P K, CUI G, BIANCHINI C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution[J]. J Power Sources,2010,195(5):1375−1378. doi: 10.1016/j.jpowsour.2009.09.025
    [41]
    ZHOU Z-Y, WANG Q, LIN J-L, TIAN N, SUN S-G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim Acta,2010,55(27):7995−7999. doi: 10.1016/j.electacta.2010.02.071
    [42]
    GERALDES A N, DA SILVA D F, PINO E S, DA SILVA J C M, DE SOUZA R F B, HAMMER P, SPINACÉ E V, NETO A O, LINARDI M, DOS SANTOS M C. Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation[J]. Electrochim Acta,2013,111:455−465. doi: 10.1016/j.electacta.2013.08.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (196) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return