Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LIU Sen, GUO Yu-qian, SUN Pei-yong, ZHANG Sheng-hong, YAO Zhi-long. Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1911-1921. doi: 10.1016/S1872-5813(21)60146-9
Citation: LIU Sen, GUO Yu-qian, SUN Pei-yong, ZHANG Sheng-hong, YAO Zhi-long. Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1911-1921. doi: 10.1016/S1872-5813(21)60146-9

Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol

doi: 10.1016/S1872-5813(21)60146-9
Funds:  The project was supported by the National Natural Science Foundation of China (21703012) and the Scientific Research Project of Beijing Municipal Education Commission (KM 201910017010)
More Information
  • Author Bio:

    0105liusen@163.com

  • Corresponding author: E-mail: zshong@bipt.edu.cn
  • Received Date: 2021-03-26
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-08-25
  • Publish Date: 2021-12-29
  • Catalytic cracking of triglycerides and their derivatives (e.g., fatty acid methyl esters, FAMEs) by HZSM-5 zeolite offers a promising route to produce renewable aromatics and olefins, but it is primarily hindered by the rapid catalyst deactivation caused by coke. In this work, the co-cracking of FAMEs and methanol over HZSM-5/Al2O3 composites was developed to regulate the product distribution and slower the catalyst deactivation. Co-feeding methanol with FAMEs enhanced the olefin selectivity at the expense of aromatics, and the total selectivities of aromatics and olefins added up to 70.9% with an optimized methanol content of 60%. The co-feeding of methanol not only promoted the olefin yield but also retarded the consecutive H-elimination of aromatics to polycyclic aromatics, thus reducing the coke formation and prolonging the catalyst lifespan. Under the conditions of 450 °C, 0.16 MPa and a space velocity of FAMEs at 4 h−1, increasing the methanol blending ratio in FAMEs from zero to 50% reduced coke from 17.8% to 10.1% after reaction for 12 h. Besides, the spent catalyst for the co-cracking reaction could be easily regenerated by coke combustion, yielding similar structure, acidity and activity to those of the fresh one.
  • loading
  • [1]
    CORMA A, CORRESA E, MATHIEU Y, SAUVANAUD L, AL-BOGAMI S, AL-GHRAMI M S, BOURANE A. Crude oil to chemicals: Light olefins from crude oil[J]. Catal Sci Technol,2017,7(1):12−46. doi: 10.1039/C6CY01886F
    [2]
    MELERO J A, IGLESIAS J, GARCIA A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges[J]. Energy Environ Sci,2012,5(6):7393−7420. doi: 10.1039/c2ee21231e
    [3]
    DIJKMANS T, PYL S P, REYNIERS M F, ABHARI R, VAN GEEM K M, MARIN G B. Production of bio-ethene and propene: Alternatives for bulk chemicals and polymers[J]. Green Chem,2013,15(11):3064−3076. doi: 10.1039/c3gc41097h
    [4]
    SUN P Y, LIU S, ZHOU Y P, ZHANG S H, YAO Z L. Production of renewable light olefins from fatty acid methyl esters by hydroprocessing and sequential steam cracking[J]. ACS Sustainable Chem Eng,2018,6(10):13579−13587. doi: 10.1021/acssuschemeng.8b03889
    [5]
    BENSON T J, HERNANDEZ R, WHITE, M G, FRENCH W T, ALLEY E E, HOLMES W E, THOMPSON B. Heterogeneous cracking of an unsaturated fatty acid and reaction intermediates on HZSM-5 catalyst[J]. Clean Soil Air Water,2008,36(8):652−656. doi: 10.1002/clen.200800050
    [6]
    CHEN H, WANG Q F, ZHANG X W, WANG L. Hydroconversion of Jatropha oil to alternative fuel over hierarchical ZSM-5[J]. Ind Eng Chem Res,2014,53(51):19916−19924. doi: 10.1021/ie503799t
    [7]
    SHIMADA I, NAKAMURA Y, OHTA H, SUZUKI K, TAKATSUKA T. Co-processing of saturated and unsaturated triglycerides in catalytic cracking process for hydrocarbon fuel production[J]. J Chem Eng Japan,2018,51(9):778−785. doi: 10.1252/jcej.17we187
    [8]
    LOK C M, VAN DOORN J, ALMANSA G A. Promoted ZSM-5 catalysts for the production of bio-aromatics, a review[J]. Renewable Sustainable Energy Rev,2019,113:109248. doi: 10.1016/j.rser.2019.109248
    [9]
    DAI W, YANG L, WANG C, WANG X, WU G, GUAN N, OBENAUS U, HUNGER M, LI L. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano HZSM-5 and its mechanistic interpretation[J]. ACS Catal,2018,8(2):1352−1362. doi: 10.1021/acscatal.7b03457
    [10]
    WANG J, ZHONG Z, DING K, DING K, ZHAGN B, DENG A, MIN M, CHEN P, RUAN R. Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics[J]. Energy Conv Manag,2017,147:100−107. doi: 10.1016/j.enconman.2017.05.050
    [11]
    VU H X, SCHNEIDER M, BENTRUP U, DANG T T, PHAN B M Q, NGUYEN D A, ARMBRUSTER U, MARTIN A. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass[J]. Ind Eng Chem Res,2015,54(6):1773−1782. doi: 10.1021/ie504519q
    [12]
    RAMOS R, GARCÍA A, BOTAS J A, SERRANO D P. Enhanced production of aromatic hydrocarbons by rapeseed oil conversion over Ga and Zn modified ZSM-5 catalysts[J]. Ind Eng Chem Res,2016,55(50):12723−12732. doi: 10.1021/acs.iecr.6b03050
    [13]
    WANG S, CAI Q, CHEN J, ZHANG L, WANG X, YU C. Green aromatic hydrocarbon production from cocracking of a bio-oil model compound mixture and ethanol over Ga2O3/HZSM-5[J]. Ind Eng Chem Res,2014,53(36):13935−13944. doi: 10.1021/ie5024029
    [14]
    ZHENG A, ZHAO Z, CHANG S, HUANG Z, ZHAO K, WU H, WANG X, HE F, LI H. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production[J]. Green Chem,2014,16(5):2580−2586. doi: 10.1039/c3gc42251h
    [15]
    CAI Q, XU J, ZHANG S. Upgrading of bio-oil aqueous fraction by dual-stage hydrotreating-cocracking with methanol[J]. ACS Sustainable Chem Eng,2017,5(7):6329−6342. doi: 10.1021/acssuschemeng.7b01505
    [16]
    MENTZEL U V, HOLM M. S. Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5[J]. Appl Catal A: Gen,2011,396(1):59−67.
    [17]
    ZHANG H, CHENG Y T, VISPUTE T P, XIAO R, HUBER G W. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio[J]. Energy Environ Sci,2011,4(6):2297−2307. doi: 10.1039/c1ee01230d
    [18]
    EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [19]
    RODRÍGUEZ-GONZÁLEZ L, HERMES F, BERTMER M, et al. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A: Gen,2007,328(2):174−182. doi: 10.1016/j.apcata.2007.06.003
    [20]
    WAN Z, WU W, CHEN W, YANG H, ZHANG D. Direct synthesis of hierarchical ZSM-5 zeolite and its performance in catalyzing methanol to gasoline conversion[J]. Ind Eng Chem Res,2014,53(50):19471−19478. doi: 10.1021/ie5036308
    [21]
    KLINOWSKI J. Solid-state NMR studies of molecular sieve catalysts[J]. Chem Rev,1991,91(7):1459−1479. doi: 10.1021/cr00007a010
    [22]
    CAI Wen-jing, YAN Hao, FENG Xiang, LIU Yi-bin, YANG Chao-he. Product distribution in catalytic cracking of fatty acid methyl esters with different carbon chain lengths[J]. CIESC J,2017,68(5):2057−2065. )
    [23]
    BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal,2007,249(2):195−207. doi: 10.1016/j.jcat.2007.04.006
    [24]
    ILIAS S, KHARE R, MALEK A, BHAN A. A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal,2013,303:135−140. doi: 10.1016/j.jcat.2013.03.021
    [25]
    SUN X, MUELLER S, LIU Y, SHI H, HALLER G L, SANCHEZ-SANCHEZ M, VAN VEEN A C, LERCHER J A. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5[J]. J Catal,2014,317:185−197. doi: 10.1016/j.jcat.2014.06.017
    [26]
    YARULINA I, CHOWDHURY A D, MEIRER F, WECKHUYSEN B M, GASCON J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat Catal,2018,1(6):398−411. doi: 10.1038/s41929-018-0078-5
    [27]
    MIER D, AGUAYO A T, GAYUBO A G, OLAZER M, BILBAO J. Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst[J]. Chem Eng J,2010,160(2):760−769. doi: 10.1016/j.cej.2010.04.016
    [28]
    AKAH A, WILLIAMS J, GHRAMI M. An overview of light olefins production via steam enhanced catalytic cracking[J]. Catal Surv Asia,2019,23:265−276. doi: 10.1007/s10563-019-09280-6
    [29]
    LUO M, FU Y, HU B, WANG D, WANG B, MAO G. Water inhibits the conversion and coking of olefins on SAPO-34[J]. Appl Catal A: Gen,2019,570:209−217. doi: 10.1016/j.apcata.2018.11.017
    [30]
    MARTINEZ-ESPIN J S, DE WISPELAERE K, JANSSENS T V W, SVELLE S, LILLERUD K P, BEATO P, VAN SPEYBROECK V, OLSBYE U. Hydrogen transfer versus methylation: On the genesis of aromatics formation in the nethanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catal,2017,7(9):5773−5780. doi: 10.1021/acscatal.7b01643
    [31]
    GROTEN W A, WOJCIECHOWSKI B W, HUNTER B K. Coke and deactivation II. Formation of coke and minor products in the catalytic cracking of n-hexene on USHY zeolite[J]. J Catal,1990,125:311−324. doi: 10.1016/0021-9517(90)90306-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (530) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return