Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
HU Bin, GUO Xue-wen, LI Yang, CHENG An-shuai, LIU Ji, LU Qiang. Reaction characteristics and mechanisms of sorbitol fast pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1821-1831. doi: 10.1016/S1872-5813(21)60150-0
Citation: HU Bin, GUO Xue-wen, LI Yang, CHENG An-shuai, LIU Ji, LU Qiang. Reaction characteristics and mechanisms of sorbitol fast pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1821-1831. doi: 10.1016/S1872-5813(21)60150-0

Reaction characteristics and mechanisms of sorbitol fast pyrolysis

doi: 10.1016/S1872-5813(21)60150-0
Funds:  The project was supported by the National Natural Science Foundation of China (52006069, 51922040), China Postdoctoral Science Foundation (2021T140202) and State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (LAPS202111)
  • Received Date: 2021-06-30
  • Rev Recd Date: 2021-07-29
  • Available Online: 2021-09-03
  • Publish Date: 2021-12-29
  • In the present study, the fast pyrolysis characteristics of sorbitol were deeply explored and the formation mechanism of the main products was revealed using fast pyrolysis experiments and density functional theory (DFT) calculations. The results show that the fast pyrolysis of sorbitol mainly produces low molecular weight products such as hydroxyacetaldehyde (HAA) and hydroxyacetone (HA), furan-based products such as furfural (FF) and 1-(2-furanyl)-ethanone (2-FE), and anhydrosugar product (isosorbitol (IS)). The yield of HA and HAA products is the highest, due to their lower overall energy barriers. Notably, the generation of HA and HAA are simultaneous. The formation of furan-based products 2-FE and FF needs to overcome relatively higher overall energy barriers, despite that some intermediates also appear in the formation of HA and HAA. Hence, the yields of furan-based products are lower than those of low molecular weight products. The reaction intermediates for formation of anhydrosugar IS are different from those of HA/HAA and 2-FE/FF. The overall energy barrier is high that leads to a very low yield of IS. This study provides a theoretical insight into the mechanism research and technique development for selective pyrolysis of sorbitol.
  • loading
  • [1]
    BAR-ON Y M, PHILLIPS R, MILO R. The biomass distribution on Earth[J]. Proc Natl Acad Sci USA,2018,115(25):6506−6511. doi: 10.1073/pnas.1711842115
    [2]
    毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004

    MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-pin. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. J Fuel Chem Technol,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004
    [3]
    FANG T, CAI Y, YANG Q, OGUTU C O, LIAO L, HAN Y P. Analysis of sorbitol content variation in wild and cultivated apples[J]. J Food Sci.,2020,100(1):139−144. doi: 10.1002/jsfa.10005
    [4]
    RIBEIRO L S, ÓRFãO J J, PEREIRA M F R. Enhanced direct production of sorbitol by cellulose ball-milling[J]. Green Chem,2015,17(5):2973−2980. doi: 10.1039/C5GC00039D
    [5]
    YAMAGUCHI S, FUJITA S, NAKAJIMA K, YAMAZOE S, YAMASAKI J, MIZUGAKI T, MITSUDOME T. Air-stable and reusable nickel phosphide nanoparticle catalyst for the highly selective hydrogenation of d-glucose to d-sorbitol[J]. Green Chem,2021,23(5):2010−2016. doi: 10.1039/D0GC03301D
    [6]
    张涛, 刘琪英, 张彩红, 张琦, 马隆龙. Ni/La2O2CO3催化剂对山梨醇氢解产物的选择性调控[J]. 化工学报,2017,68(6):2359−2367.

    (ZHAO Tao, LIU Qi-yin, ZHANG Chai-hong, ZHANG Qi, MA Long-long. Selective hydrogenolysis of sorbitol on Ni/La2O2CO3 catalysts[J]. J Chem Ind Eng,2017,68(6):2359−2367.
    [7]
    曹晓峰, 张琦, 姜东, 刘琪英, 马隆龙, 王铁军, 李德宝. 焙烧温度对Ni/La(Ⅲ)催化剂氢解山梨醇制备低碳二元醇性能的影响[J]. 燃料化学学报,2015,43(8):970−979. doi: 10.3969/j.issn.0253-2409.2015.08.010

    CHAO Xiao-feng, ZHAO Qi, JIANG Dong, LIU Qi-yin, MA Long-long, WAN Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La (III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. J Fuel Chem Technol,2015,43(8):970−979. doi: 10.3969/j.issn.0253-2409.2015.08.010
    [8]
    董慧焕, 郭星翠, 秦张峰, 韩生, 牟新东. 官能化碳纳米管负载Ru催化山梨醇氢解制备低碳二元醇[J]. 燃料化学学报,2015,43(12):1454−1460. doi: 10.3969/j.issn.0253-2409.2015.12.008

    DONG Hui-huan, GUO Xing-cui, QIN Zhang-feng, HAN Shen, MOU Xin-dong. Effect of modified groups of carbon nanotubes on catalytic properties of Ru/CNTs catalysts for hydrogenolysis of sorbitol[J]. J Fuel Chem Technol,2015,43(12):1454−1460. doi: 10.3969/j.issn.0253-2409.2015.12.008
    [9]
    ZHANG X, RABEE A I, ISAACS M, LEE A, WILSON K. Sulfated zirconia catalysts for d-sorbitol cascade cyclodehydration to isosorbide: Impact of zirconia phase[J]. ACS Sustainable Chem Eng,2018,6(11):14704−14712. doi: 10.1021/acssuschemeng.8b03268
    [10]
    YUAN D, LI L, LI F, WANG F, ZHAO N, XIAO F. Solvent-free production of isosorbide from sorbitol catalyzed by a polymeric solid acid[J]. ChemSusChem,2019,12(22):4986−9495. doi: 10.1002/cssc.201901922
    [11]
    ZHANG Q, TAN J, WANG T, ZHANG Q, MA L, QIU S, WENG Y. Sorbitol transformation into aromatics: A comparative evaluation of Ni/HZSM-5 and Ni/Hβ[J]. Fuel,2016,165:152−158. doi: 10.1016/j.fuel.2015.10.071
    [12]
    WANG S, DAI G, YANG H, LUO Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust Sci,2017,62:33−86. doi: 10.1016/j.pecs.2017.05.004
    [13]
    尚双, 郭朝强, 兰奎, 李泽善, 秦振华, 贺维韬, 李建芬. Ni/Zr-MOF催化剂的制备及其在生物质热解中的应用[J]. 燃料化学学报,2019,47(9):1067−1074. doi: 10.3969/j.issn.0253-2409.2019.09.005

    SHANG Shuang, GUO Zhao-qiang, LAN Kui, LI Ze-shan, QIN Zhen-hua, HE Wei-tao, LI Jian-fen. Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass[J]. J Fuel Chem Technol,2019,47(9):1067−1074. doi: 10.3969/j.issn.0253-2409.2019.09.005
    [14]
    GóMEZ-SIURANA A, MARCILLA A, BELTRAN M, MARTINEZ I, BERENGUER D, GARCÍA-MARTÍNEZ R, HERNÁNDEZ-SELVA T. Study of the oxidative pyrolysis of tobacco-sorbitol-saccharose mixtures in the presence of MCM-41[J]. Thermochim Acta,2012,530:87−94. doi: 10.1016/j.tca.2011.12.008
    [15]
    BAKER R R, BISHOP L J. The pyrolysis of tobacco ingredients[J]. J Anal Appl Pyrolysis,2004,71(1):223−311. doi: 10.1016/S0165-2370(03)00090-1
    [16]
    GUNAWAN M, HUDAYA T, SOERAWIDJAJA T H. Synthesis of bio-hexane and bio-hexene from sorbitol using formic acid as reducing agent[J]. J Eng Technol Sci,2021,53(1):17−28.
    [17]
    EASTON M W, NASH J J, KENTTÄMAA H I. Dehydration pathways for glucose and cellobiose during fast pyrolysis[J]. J Phys Chem A,2018,122(41):8071−8085.
    [18]
    LONG Y, YU Y, SONG B, WU H W. Polymerization of glucose during acid-catalyzed pyrolysis at low temperatures[J]. Fuel,2018,230:83−88. doi: 10.1016/j.fuel.2018.05.022
    [19]
    HUTCHINSON C P, LEE Y J. Evaluation of primary reaction pathways in thin-film pyrolysis of glucose using 13C labeling and real-time monitoring[J]. ACS Sustainable Chem Eng,2017,5(10):8796−8803. doi: 10.1021/acssuschemeng.7b01601
    [20]
    FRISCH M, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16[CP]. Gaussian, Inc. Wallingford, CT, 2016.
    [21]
    HU B, XIE W L, LI H, LI K, LU Q, YANG Y P. On the mechanism of xylan pyrolysis by combined experimental and computational approaches[J]. Proc Combust Inst,2021,38(3):4215−4223. doi: 10.1016/j.proci.2020.06.172
    [22]
    HU B, LU Q, JIANG X Y, LIU J, CUI M S, DONG C Q, YANG Y P. Formation mechanism of hydroxyacetone in glucose pyrolysis: A combined experimental and theoretical study[J]. Proc Combust Inst,2019,37(3):2741−2748. doi: 10.1016/j.proci.2018.05.146
    [23]
    BANERJEE A, MUSHRIF S H. Reaction pathways for the deoxygenation of biomass-pyrolysis-derived bio-oil on Ru: A DFT study using furfural as a model compound[J]. ChemCatChem,2017,9(14):2828−2838. doi: 10.1002/cctc.201700036
    [24]
    YU Z, MURRIA P, EASTON M W, DEGENSTEIN J C, ZHU H, XU L, AGRAWAL R, NICHOLASS W N, RIBEIRO H F, KENTTÄMAA H I. Exploring the reaction mechanisms of fast pyrolysis of xylan model compounds via tandem mass spectrometry and quantum chemical calculations[J]. J Phys Chem A,2019,123(42):9149−9157. doi: 10.1021/acs.jpca.9b04438
    [25]
    LU Q, TIAN H Y, HU B, JIANG X Y, DONG C Q, YANG Y P. Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde[J]. J Anal Appl Pyrolysis,2016,120:15−26. doi: 10.1016/j.jaap.2016.04.003
    [26]
    ARORA J S, ANSARI K B, CHEW J W, DAUENHAUER P, MUSHRIF S. Unravelling the catalytic influence of naturally occurring salts on biomass pyrolysis chemistry using glucose as a model compound: A combined experimental and DFT study[J]. Catal Sci Technol,2019,9(13):3504−3524. doi: 10.1039/C9CY00005D
    [27]
    HU B, LU Q, JIANG X Y, DONG X C, CUI M S, DONG C Q, YANG Y P. Insight into the formation of anhydrosugars in glucose pyrolysis: A joint computational and experimental investigation[J]. Energy Fuels,2017,31(8):8291−8299. doi: 10.1021/acs.energyfuels.7b01250
    [28]
    KOSTETSKYY P, COILE M W, TERRIAN J M, COLLINS J W, MARTIN K J, BRAZDIL J F, BROADBELT L J. Selective production of glycolaldehyde via hydrothermal pyrolysis of glucose: Experiments and microkinetic modeling[J]. J Anal Appl Pyrolysis,2020,149:104846. doi: 10.1016/j.jaap.2020.104846
    [29]
    HU B, LU Q, JIANG X Y, DONG X C, CUI M S, DONG C Q, YANG Y P. Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. J Energy Chem,2018,27(2):486−501. doi: 10.1016/j.jechem.2017.11.013
    [30]
    FANG Y, LI J, CHEN Y, LU Q, YANG H P, WANG X H, CHEN H P. Experiment and modeling study of glucose pyrolysis: formation of 3-hydroxy-γ-butyrolactone and 3-(2H)-furanone[J]. Energy Fuels,2018,32(9):9519−9129. doi: 10.1021/acs.energyfuels.8b01877
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (838) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return