Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
KONG Jiao, WANG Huan, YU Yan-xu, CHEN Ya-nan, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 385-395. doi: 10.1016/S1872-5813(21)60164-0
Citation: KONG Jiao, WANG Huan, YU Yan-xu, CHEN Ya-nan, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 385-395. doi: 10.1016/S1872-5813(21)60164-0

Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal

doi: 10.1016/S1872-5813(21)60164-0
Funds:  The project was supported by National Natural Science Foundation of China (21808152, 21878208)
  • Received Date: 2021-07-26
  • Rev Recd Date: 2021-09-14
  • Available Online: 2021-10-13
  • Publish Date: 2022-04-26
  • Pyrolysis atmosphere has significant effect on yield and composition of coal tar. A pyrolysis and gasification integrated reactor in laboratory was used to investigate effects of gasification syngas on yield and composition of coal tar. The results show that tar yield of Naomaohu coal reaches the maximum at 600 ℃, and gasification syngas (G-gas) is more beneficial to improve the tar yield at low temperature (550–600 ℃). Especially, 550 ℃ tar yield increases by 4.4% compared with that under N2. With the introduction of G-gas, the yield of tar obtained at high temperature (650–800 ℃) decreases, but the quality of tar obtained at 650–700 ℃ is improved obviously due to the increase of light components. The cracking reaction of aliphatic hydrocarbons and oxygen-containing compounds in volatiles from pyrolysis at 550 and 600 ℃ is intensified by G-gas, thus substituted benzene and naphthalene compounds in coal tar increase. For the volatiles obtained above 650 ℃, the secondary cracking reaction of phenolic compounds is enhanced with the introduction of G-gas, which results in a decrease of phenolic compounds in tar. G-gas is also favorable for the secondary cracking reaction of polycyclic aromatic hydrocarbons in volatiles from pyrolysis at 800 ℃, but more favorable for generation of which in the tar obtained below 700 ℃.
  • loading
  • [1]
    王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊,2012,27(3):382−388. doi: 10.3969/j.issn.1000-3045.2012.03.018

    WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Sci,2012,27(3):382−388. doi: 10.3969/j.issn.1000-3045.2012.03.018
    [2]
    韩永滨, 刘桂菊, 赵慧斌. 低阶煤的结构特点与热解技术发展概述[J]. 中国科学院院刊,2013,28(6):772−780.

    HAN Yong-bin, LIU Gui-ju, ZHAO Hui-bin. Structural characteristics of low-rank coal and its pyrolysis technology development[J]. Bull Chin Acad Sci,2013,28(6):772−780.
    [3]
    ZHANG C, WU R C, HU E F, LIU S Y, XU G W. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy Fuels, 2014, 28: 7294–7302.
    [4]
    EDWARDS J H, SCHLUTER K, TYLER R J. Upgrading of flash pyrolysis tars to synthetic crude oil: 1. First stage hydrotreatment using a disposable catalyst[J]. Fuel, 1985, 64: 594–599.
    [5]
    SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel,1993,72(5):587−597. doi: 10.1016/0016-2361(93)90570-R
    [6]
    GREENE M I. Engineering development of a short residence time, coal hydropyrolysis process[J]. Fuel Process Technol,1978,1(3):169−185. doi: 10.1016/0378-3820(78)90017-6
    [7]
    WANG P F, JIN L, LIU J, ZHU S, HU H. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104(2):14−21.
    [8]
    JIN L J, ZHOU X, HE X F, HU H Q. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel,2013,114:l87−190.
    [9]
    DONG C, JIN L J, LI Y, ZHOU Y. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28:7377−7384. doi: 10.1021/ef501796a
    [10]
    ZHONG M, ZHANG Z K, ZHOU Q, YUE J R. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: Product distribution and pyrolysis gas[J]. J Anal Appl Pyrolysis,2012,97(6):123−129.
    [11]
    STEINBERG M, FALLON P T. Make ethylene and benzene by flash methanolysis of coal[J]. Hydrocarb Process,1982,61(11):92−96.
    [12]
    郭志航. 褐煤热解分级转化多联产工艺的关键问题研究[D]. 杭州: 浙江大学, 2015.

    GUO Zhi-hang. Research on key issues of lignite pyrolysis-based staged conversion polygeneration technology[D]. Hangzhou: Zhejiang University, 2015.
    [13]
    李保庆. 我国煤加氢热解研究Ⅲ. 神府煤加氢、催化加氢及H2-CH4气氛下热解的研究[J]. 燃料化学学报,1995,23(2):192−197.

    LI Bao-qing. Hydropyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis and pyrolysis under H2-CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol,1995,23(2):192−197.
    [14]
    胡浩权, 狄敏娜, 王明义, 靳立军, 王德超. 煤热解焦油催化裂解和乙烷水蒸气重整耦合提高焦油品质[J]. 煤炭学报,2020,45(1):386−392.

    HU Hao-quan, DI Min-na, WANG Ming-yi, JIN Li-jun, WANG De-chao. Upgrading of coal pyrolysis tar by catalytic cracking coupled with steam reforming of ethane[J]. J China Coal Soc,2020,45(1):386−392.
    [15]
    廖洪强, 张碧江, 李保庆, 刘泽常. 煤-焦炉气共热解特性研究IV. 甲烷和一氧化碳对热解的影响[J]. 燃料化学学报,1998,26(1):13−17.

    LIAO Hong-qiang, ZHANG Bi-jiang, LI Bao-qing, LIU Ze-chang. Copyrolysis of coal with coke-oven gas IV. Influence of CH4 and CO on pyrolysis yields[J]. J Fuel Chem Technol,1998,26(1):13−17.
    [16]
    JIN L J, ZHAO H B, WANG M Y, WEI B Y, HU H Q. Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a subbituminous coal[J]. Fuel,2019,241:1129−1137. doi: 10.1016/j.fuel.2018.12.093
    [17]
    ZHANG X F, DONG L, ZHANG J W, TIAN Y J, XU G W. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. J Anal Appl Pyrolysis,2011,91(1):241−250. doi: 10.1016/j.jaap.2011.02.013
    [18]
    ARIUNAA A, LI B Q, LI W, PUREVSUREN B, MUNKHJARGAL S, LIU F R, BAI Z Q, WANG G. Coal pyrolysis under synthesis gas, hydrogen and nitrogen[J]. J Fuel Chem Technol,2007,35(1):1−4. doi: 10.1016/S1872-5813(07)60007-3
    [19]
    CHEN Z H, SHI Y, LAI D G, GAO S Q, SHI Z, TIAN Y, XU G W. Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification[J]. Fuel,2016,176:200−208. doi: 10.1016/j.fuel.2016.02.082
    [20]
    LIAO H Q, LI B Q, ZHANG B J. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(8):847−851. doi: 10.1016/S0016-2361(97)00257-3
    [21]
    LIAO H Q, LI B Q, ZHANG B J. Pyrolysis of coal with hydrogen-rich gases. 2. Desulfurization and denitrogenation in coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(14):1643−1646. doi: 10.1016/S0016-2361(98)00076-3
    [22]
    FIDALGO B, NIEKERK D V, MILLAN M. The effect of syngas on tar quality and quantity in pyrolysis of a typical South African inertinite-rich coal[J]. Fuel,2014,134(9):90−96.
    [23]
    MURAKAMI T, YASUDA H, NORISADA K. Comparison of tar components in syngas generated by gasification conditions of lignite in a fluidized bed gasifier[J]. Energy Fuels,2018,32(2):1110−1114. doi: 10.1021/acs.energyfuels.7b02579
    [24]
    CHEN Z H, LAI D G, BAI L Q, TIAN Y, GAO S Q, XU G W. Methane-rich syngas production in an integrated fluidized bed by coupling pyrolysis and gasification of low-rank coal[J]. Fuel Process Technol,2015,140:88−95. doi: 10.1016/j.fuproc.2015.08.028
    [25]
    靳鑫, 王倩, 李晓荣, 李挺, 王美君, 孔娇, 闫伦靖, 常丽萍, 王建成, 鲍卫仁. 煤热解挥发分在活性炭上的积炭行为及其过程分析[J]. 燃料化学学报,2021,49(5):609−616. doi: 10.1016/S1872-5813(21)60047-6

    (JIN Xin, WANG Qian, LI Xiao-rong, LI Ting, WANG Mei-jun, KONG Jiao, YAN Lun-jing, CHANG Li-ping, WANG Jian-cheng, BAO Wei-ren. Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles[J]. J Fuel Chem Technol,2021,49(5):609−616. doi: 10.1016/S1872-5813(21)60047-6
    [26]
    SOLOMON P R, HAMBLEN D G, CARANGELO R M, SERIO M A, DESHPANDE G V. Models of tar formation during coal devolatilization[J]. Combust Flame,1988,71(2):137−146. doi: 10.1016/0010-2180(88)90003-X
    [27]
    SHI L, LIU Q Y, LIU Z Y, WU W Z. Oils and phenols-and-water-free tars produced in pyrolysis of 23 Chinese coals in consecutive temperature ranges[J]. Energy Fuels,2013,27(10):5816−5822. doi: 10.1021/ef401215h
    [28]
    王欢. 热场温度与填料介质对淖毛湖煤挥发分反应的影响[D]. 太原: 太原理工大学, 2019.

    WANG Huan. Effect of thermal field temperature and packing medium on reactions of volatiles from Naomaohu coal[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [29]
    LIU P, ZHANG D X, WANG L L, ZHOU Y, PAN T Y, LU X L. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Appl Energy,2016,163:254−262. doi: 10.1016/j.apenergy.2015.10.166
    [30]
    LIU P, LE J W, WANG L L, PAN T Y, LU X L, ZHANG D X. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Appl Energy,2016,183:470−477. doi: 10.1016/j.apenergy.2016.08.166
    [31]
    KOUICHI M. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62(2):119−135.
    [32]
    WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104:14−21. doi: 10.1016/j.fuel.2010.06.041
    [33]
    TAKAHASHI H, IWATSUKI M, ESSAKI K, TSUTSUMI A, CHIBA T. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J]. Fuel, 2000, 79: 439-447.
    [34]
    SONG Y, WANG Y, HU X, XIANG J, HU S, MOURANT D, LI T, WUL, LI C Z. Effects of volatile-char interactions on in-situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part II. Roles of steam[J]. Fuel,2015,143:555−562. doi: 10.1016/j.fuel.2014.11.096
    [35]
    LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles - A crucial step in pyrolysis of coals[J]. Fuel,2015,154:361−369. doi: 10.1016/j.fuel.2015.04.006
    [36]
    SILBERNAGELl B G, GEBHARD L A, DYRKACZ G R, BLOOMQUIST C A A. Electron spin resonance of isolated coal macerals[J]. Fuel,1986,65(4):558−565. doi: 10.1016/0016-2361(86)90049-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2290) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return