Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
WANG Yi-shuang, CHEN Ming-qiang, SHI Jing-jing, ZHANG Jin-hui, LI Chang, WANG Jun. Catalytic depolymerization of kraft lignin for liquid fuels and phenolic monomers over molybdenum-based catalysts: The effect of supports[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1922-1935. doi: 10.1016/S1872-5813(21)60167-6
Citation: WANG Yi-shuang, CHEN Ming-qiang, SHI Jing-jing, ZHANG Jin-hui, LI Chang, WANG Jun. Catalytic depolymerization of kraft lignin for liquid fuels and phenolic monomers over molybdenum-based catalysts: The effect of supports[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1922-1935. doi: 10.1016/S1872-5813(21)60167-6

Catalytic depolymerization of kraft lignin for liquid fuels and phenolic monomers over molybdenum-based catalysts: The effect of supports

doi: 10.1016/S1872-5813(21)60167-6
Funds:  The project was supported by the Key Research and Development Projects of Anhui Province (202004a06020053), National Natural Science Foundation of China (51876001, 51906001)
More Information
  • Corresponding author: Tel: +8618055410656, Fax: +8605546699632, E-mail: mqchen@aust.edu.cn
  • Received Date: 2021-07-30
  • Rev Recd Date: 2021-09-13
  • Available Online: 2021-10-18
  • Publish Date: 2021-12-29
  • Catalytic lignin depolymerization (CCLD) for liquid fuels and phenolic monomers was investigated over various supports including clays (e.g., sepiolite (SEP), attapulgite (ATP), and montmorillonite (MTM)), and oxides (e.g., Al2O3 and SiO2) as well as their supported Mo-based catalysts under supercritical ethanol. The characterization results demonstrated that different supports with diverse structural properties could affect the textural structures, surface Mo5+ content, and acid sites distribution. Clay-based supports had more strong acid sites as compared with Al2O3 and SiO2, which went against the production of lignin oil (LO) and led to form more solid products during CLD experiments. Meanwhile, the obtained petroleum ether-soluble product (PEsp) in LO catalyzed by sole supports was mainly alkyl/alkoxy substituted phenols. Additionally, Mo species (especially Mo5+) significantly increased the yields of LO and PEsp. Mo/SiO2 had the highest surface Mo5+ species, showing the highest LO yield of 85.2%, in which the produced alkyl/alkoxy substituted phenols reached 450.3 mg/glignin. Among the clay-supported Mo catalysts, Mo/SEP presented superior LO (82.3%) and PEsp (70.8%) yields and the generated substituted phenols reached 398.8 mg/glignin. This paper systematically reported the application of green and environmentally friendly clay-based materials in lignin conversion, which provides some key information for the development of clay catalysts for biomass conversion.
  • loading
  • [1]
    ZHAO B, WU K, ZHONG L P, WEI G, HU Z H, ZHENG, W G, RUAN H F, YAN X M, MA Y, WANG B, JIANG T L, ZHANG H Y. Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics[J]. J Fuel Chem Technol,2021,49(3):304−311. doi: 10.1016/S1872-5813(21)60015-4
    [2]
    ZAKZESKI J, BRUIJNINCX P C A, JONGERIUS A L, WECKHUYSEN B M. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev,2010,110(6):3552−3599. doi: 10.1021/cr900354u
    [3]
    LI H J, BUNRIT A, LI N, WANG F. Heteroatom-participated lignin cleavage to functionalized aromatics[J]. Chem Soc Rev,2020,49(12):3748−3763. doi: 10.1039/D0CS00078G
    [4]
    CHEN M Q, SHI J J, WANG Y S, TANG Z Y, YANG Z L, WANG J, ZHANG H. Conversion of Kraft lignin to phenol monomers and liquid fuel over trimetallic catalyst W-Ni-Mo/sepiolite under supercritical ethanol[J]. Fuel,2021,303:121332. doi: 10.1016/j.fuel.2021.121332
    [5]
    NGUYEN L T, PHAN D P, SARWAR A, TRAN M H, LEE O K, LEE E Y. Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion[J]. Ind Crop Prod,2021,161:113219. doi: 10.1016/j.indcrop.2020.113219
    [6]
    OUYANG X P, TAN Y D, QIU X Q. Oxidative degradation of lignin for producing monophenolic compounds[J]. J Fuel Chem Technol,2014,42(6):677−682. doi: 10.1016/S1872-5813(14)60030-X
    [7]
    DOU X M, LI W Z, ZHU C F. Catalytic hydrotreatment of Kraft lignin into liquid fuels over porous ZnCoOx nanoplates[J]. Fuel,2021,283:118801. doi: 10.1016/j.fuel.2020.118801
    [8]
    DOU X M, LI W Z, ZHU C F, JIANG X. Catalytic waste Kraft lignin hydrodeoxygenation to liquid fuels over a hollow Ni-Fe catalyst[J]. Appl Catal B: Environ,2021,287:119975. doi: 10.1016/j.apcatb.2021.119975
    [9]
    WANG J D, LI W Z, WANG H Z, MA Q Z, LI S, CHANG H M, JAMEEL H. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst[J]. Bioresour Technol,2017,243:100−106. doi: 10.1016/j.biortech.2017.06.024
    [10]
    LI W Z, DOU X M, ZHU C F, WANG J D, CHANG H M, JAMEEL H, LI X S. Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst[J]. Bioresour Technol,2018,269:346−354. doi: 10.1016/j.biortech.2018.08.125
    [11]
    YU Y X, XU Y, WANG T J, MA L L, ZHANG Q, ZHANG X H, ZHANG X. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J]. J Fuel Chem Technol,2013,41(4):443−448. doi: 10.1016/S1872-5813(13)60023-7
    [12]
    WU Y S, LIN Z X, HU X, GHOLIZADEH M, SUN H Q, HUANG Y, ZHANG S, ZHANG H. Hydrogenolysis of lignin to phenolic monomers over Ru based catalysts with different metal-support interactions: Effect of partial hydrogenation of C(sp2)-O/C[J]. Fuel,2021,302:121184. doi: 10.1016/j.fuel.2021.121184
    [13]
    LONG J X, XU Y, WANG T J, ZHANG X H, ZHANG Q, MA L L, LI Y P. Catalytic depolymerization and hydrogenolysis of lignin[J]. Adv New Renewable Energy,2014,2(2):83−88.
    [14]
    XIAO L P, WANG S Z, LI H L, LI Z W, SHI Z J, XIAO L, SUN R C, FANG Y M, SONG G Y. Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide[J]. ACS Catal,2017,7(11):7535−7542. doi: 10.1021/acscatal.7b02563
    [15]
    DU B Y, LIU C, WANG X, HAN Y, GUO Y Z, LI H M, ZHOU J H. Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water[J]. Renewable Energy,2020,147:1331−1339. doi: 10.1016/j.renene.2019.09.108
    [16]
    CHEN M Q, LU H T, WANG Y S, TANG Z Y, ZHANG J H, WANG C S, YANG Z L, WANG J, ZHANG H. Effect of reduction treatments of Mo/sepiolite catalyst on lignin depolymerization under supercritical ethanol[J]. Energy Fuels,2020,34(3):3394−3405. doi: 10.1021/acs.energyfuels.9b04533
    [17]
    HUANG X M, KORÁNYI T I, BOOT M D, HENSEN E J M. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics[J]. Green Chem,2015,17:4941. doi: 10.1039/C5GC01120E
    [18]
    HUANG X M, ATAY C, KORÁNYI T I, BOOT M D, HENSEN E J M. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol[J]. ACS Catal,2015,5(12):7359−7370. doi: 10.1021/acscatal.5b02230
    [19]
    KORÁNYI T I, HUANG X M, COUMANS A E, HENSEN E J M. Synergy in lignin upgrading by a combination of Cu-based mixed oxide and Ni-phosphide catalysts in supercritical ethanol[J]. ACS Sustainable Chem Eng,2017,5(4):3535−3543. doi: 10.1021/acssuschemeng.7b00239
    [20]
    WANG Y S, TANG Z Y, CHEN M Q, ZHANG J H, SHI J J, WANG C S, YANG Z L, WANG J. Effect of Mo content in Mo/Sepiolite catalyst on catalytic depolymerization of Kraft lignin under supercritical ethanol[J]. Energy Convers Manage,2020,222:113227. doi: 10.1016/j.enconman.2020.113227
    [21]
    HUANG X M, KORÁNYI T I, BOOT M D, HENSEN E J M. Catalytic depolymerization of lignin in supercritical ethanol[J]. ChemSusChem,2014,7(8):2276−2288. doi: 10.1002/cssc.201402094
    [22]
    JEONG S, JANG G H, KIM D H. Depolymerization of protobind lignin using MO-MgAlOy mixed oxide catalysts (M=Co, Ni and Cu) in supercritical ethanol[J]. Top Catal,2017,60:637−643. doi: 10.1007/s11244-017-0787-z
    [23]
    JEONG S, YANG S, KIM D H. Depolymerization of protobind lignin to produce monoaromatic compounds over Cu/ZSM-5 catalyst in supercritical ethanol[J]. Mol Catal,2017,442:140−146. doi: 10.1016/j.mcat.2017.09.010
    [24]
    CHEN M Q, ZHANG J H, WANG Y S, TANG Z Y, SHI J J, WANG C S, YANG Z L, WANG J, ZHANG H. Lignin catalytic depolymerization for liquid fuel and phenols by using Mo/sepiolite catalysts calcined at different temperature[J]. J Environ Chem Eng,2021,9(4):105348. doi: 10.1016/j.jece.2021.105348
    [25]
    TANG Z Y, WANG Y S, CHEN M Q, ZHANG J H, WANG C S, YANG Z L, ZHANG H, WANG J. Study of Mo-based sepiolite catalyst on depolymerization of lignin under supercritical ethanol[J]. Int J Energy Res,2020,44(1):257−268. doi: 10.1002/er.4901
    [26]
    PRASOMSRI T, SHETTY M, MURUGAPPAN K, ROMÁN-LESHKOV Y. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures[J]. Energy Environ Sci,2014,7(8):2660−2669. doi: 10.1039/C4EE00890A
    [27]
    ZHANG X H, CHEN Q, ZHANG Q, WANG C G, MA L L, XU Y. Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst[J]. J Anal Appl Pyrolysis,2018,135:60−66. doi: 10.1016/j.jaap.2018.09.020
    [28]
    PRASOMSRI T, NIMMANWUDIPONG T, ROMAN-LESHKOV Y. Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures[J]. Energy Environ Sci,2013,6:1732−1738. doi: 10.1039/c3ee24360e
    [29]
    SHETTY M, ANDERSON E M, GREEN W H, ROMÁN-LESHKOV Y. Kinetic analysis and reaction mechanism for anisole conversion over zirconia-supported molybdenum oxide[J]. J Catal,2019,376:248−257. doi: 10.1016/j.jcat.2019.06.046
    [30]
    HEWER T L R, SOUZA A G F, ROSENO K T C, MOREIRA P F, BONFIM R, ALVES R M B, SCHMAL M. Influence of acid sites on the hydrodeoxygenation of anisole with metal supported on SBA-15 and SAPO-11[J]. Renewable Energy,2018,119:615−624. doi: 10.1016/j.renene.2017.12.044
    [31]
    RANGA C, ALEXIADIS V I, LAUWAERT J, LØDENG R, THYBAUT J W. Effect of Co incorporation and support selection on deoxygenation selectivity and stability of (Co)Mo catalysts in anisole HDO[J]. Appl Catal A: Gen,2019,571:61−70. doi: 10.1016/j.apcata.2018.12.004
    [32]
    WU Z, ZHANG J, ZHAO X X, LI X, ZHANG Y, WANG F. Attapulgite-supported magnetic dual acid–base catalyst for the catalytic conversion of lignin to phenolic monomers[J]. J Chem Technol Biot,2019,94(4):1269−1281. doi: 10.1002/jctb.5881
    [33]
    WU Z, ZHANG J, PAN Q Q, LI X, ZHANG Y, WANG F. Catalytic alcoholysis of alkaline extracted lignin for the production of aromatic esters over SO42-/ZrO2-ATP[J]. RSC Adv,2018,8:12344−12353. doi: 10.1039/C8RA00815A
    [34]
    BHATTI U H, SULTAN H, MIN G H, NAM S C, BAEK I H. Ion-exchanged montmorillonite as simple and effective catalysts for efficient CO2 capture[J]. Chem Eng J,2021,413:127476. doi: 10.1016/j.cej.2020.127476
    [35]
    WANG Z H, JIAO M Y, CHEN Z P, HE H, LIU L C. Effects of montmorillonite and anatase TiO2 support on CeO2 catalysts during NH3-SCR reaction[J]. Microporous Mesoporous Mater,2021,320:111072. doi: 10.1016/j.micromeso.2021.111072
    [36]
    WANG Y S, WANG C S, CHEN M Q, TANG Z Y, YANG Z L, HU J X, ZHANG H. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts - Part I: Effect of nickel content[J]. Fuel Process Technol,2019,192:227−238. doi: 10.1016/j.fuproc.2019.04.031
    [37]
    CHEN M Q, HU J X, WANG Y S, WANG C S, TANG Z Y, LI C, LIANG D F, CHENG W, YANG Z L, ZHANG H. Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts[J]. Int J Hydrog Energy,2021,46(5):3651−3668. doi: 10.1016/j.ijhydene.2020.10.196
    [38]
    ZHANG X H, TANG J J, ZHANG Q, LIU Q Y, LI Y P, CHEN L G, WANG C G, MA L L. Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst[J]. Catal Today,2019,319:41−47. doi: 10.1016/j.cattod.2018.03.068
    [39]
    CUI K, YANG L, MA Z W, YAN F, WU K, SANG Y S, CHEN H, LI Y D. Selective conversion of guaiacol to substituted alkylphenols in supercritical ethanol over MoO3[J]. Appl Catal A: Gen,2017,219:592−602.
    [40]
    MA X L, MA R, HAO W Y, CHEN M M, YAN F, CUI K, TIAN Y, LI Y D. Common pathways in ethanolysis of Kraft lignin to platform chemicals over molybdenum-based catalysts[J]. ACS Catal,2015,5(8):4803−4813. doi: 10.1021/acscatal.5b01159
    [41]
    KIM S M, LEE Y J, BAE J W, POTDAR H S, JUN K W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen,2008,348:113−120. doi: 10.1016/j.apcata.2008.06.032
    [42]
    PAPAGERIDIS K N, CHARISIOU N D, DOUVARTZIDES S, SEBASTIAN V, HINDER S J, BAKER M A, ALKHOORI A A, ALKHOORI S I, POLYCHRONOPOULOU K, GOULA M A. Continuous selective deoxygenation of palm oil for renewable diesel production over Ni catalysts supported on Al2O3 and La2O3-Al2O3[J]. RSC Adv,2021,11:8569−8584. doi: 10.1039/D0RA08541C
    [43]
    CHEN M M, HAO W Y, MA R, MA X L, YANG L, YAN F, CUI K, CHEN H, LI Y D. Catalytic ethanolysis of Kraft lignin to small-molecular liquid products over an alumina supported molybdenum nitride catalyst[J]. Catal Today,2017,298:9−15. doi: 10.1016/j.cattod.2017.08.012
    [44]
    CHEN M M, MA X L, MA R, WEN Z, YAN F, CUI K, CHEN H, LI Y D. Ethanolysis of Kraft lignin over a reduction modified MoO3 catalyst[J]. Ind Eng Chem Res,2017,56(47):14025−14033. doi: 10.1021/acs.iecr.7b03585
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (228) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return