Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LU Yi, LIANG Ruo-wen, YAN Gui-yang, LIANG Zhi-yu, HU Wei-neng, XIA Yu-zhou, HUANG Ren-kun. Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 456-463. doi: 10.1016/S1872-5813(21)60170-6
Citation: LU Yi, LIANG Ruo-wen, YAN Gui-yang, LIANG Zhi-yu, HU Wei-neng, XIA Yu-zhou, HUANG Ren-kun. Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 456-463. doi: 10.1016/S1872-5813(21)60170-6

Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification

doi: 10.1016/S1872-5813(21)60170-6
Funds:  The project was supported by Program for Innovative Research Team in Science and Technology in Fujian Province University, Natural Science Foundation of Fujian Province (2019J05121), Research Project of Ningde Normal University (2019T03) and the Training Program Foundation for Distinguished Young Scholar by Fujian Province.
More Information
  • Author Bio:

    957832459@qq.com

  • Corresponding author: Tel: +86-593-2965018; E-mail: t1432@ndnu.edu.cn
  • Received Date: 2021-08-04
  • Rev Recd Date: 2021-09-23
  • Available Online: 2021-10-25
  • Publish Date: 2022-04-26
  • Solvothermal synthesis technique is an effective method to create composite materials. In this paper, a series of TiO2@MIL-101(Cr) were prepared by the solvothermal method for photocatalytic denitrification of pyridine in fuel under visible light irradiation. The products were characterized by XRD, FT-IR, SEM, TEM, BET, DRS and ESR. The result shows that 20%TiO2@MIL-101(Cr) has high catalytic activity, the pyridine removal efficiency reaches values as high as 70% after irradiation for 240 min. Finally, we obtained the possible mechanism of photocatalytic denitrification according to the HPLC-MS spectrometry results analysis.
  • loading
  • [1]
    YIN C. International law regulation of offshore oil and gas exploitation[J]. Environ Impact Assess Rev,2021,88:106551.
    [2]
    PRADO G H C, RAO Y, KLERK A. Nitrogen removal from oil: A review[J]. Energy Fuels,2016,31(1):14−36.
    [3]
    BHADRA B N, BAEK Y S, CHOI C H, JHUNG S H. How neutral nitrogen-containing compounds are oxidized in oxidative-denitrogenation of liquid fuel with TiO2@carbon[J]. Phys Chem Chem Phys,2021,23(14):8368−8374. doi: 10.1039/D1CP00633A
    [4]
    DEESE R D, MORRIS R E, METZ A E, MYERS K M, JOHNSON K, LOEGEL T N. Characterization of organic nitrogen compounds and their impact on the stability of marginally stable diesel fuels[J]. Energy Fuels,2019,33(7):6659−6669. doi: 10.1021/acs.energyfuels.9b00932
    [5]
    PAUCAR N E, KIGGINS P, BLAD B, DE JESUS K, AFRIN F, PASHIKANTI S, SHARMA K. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: A review[J]. Environ Chem Lett,2021,19(2):1205−1228. doi: 10.1007/s10311-020-01135-1
    [6]
    JURY M R. Meteorology of air pollution in Los Angeles[J]. Atmospheric Pollut Res,2020,11(7):1226−1237. doi: 10.1016/j.apr.2020.04.016
    [7]
    LIANG R, HUANG R, WANG X, YING S, YAN G, WU L. Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution[J]. Appl Surf Sci,2019,464:396−403. doi: 10.1016/j.apsusc.2018.09.100
    [8]
    ALVARO M, CARBONELL E, FERRER B, LLABRES I XAMENA F X, GARCIA H. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chem Eur J,2007,13(18):5106−51112. doi: 10.1002/chem.200601003
    [9]
    DHAKSHINAMOORTHY A, LI Z, GARCIA H. Catalysis and photocatalysis by metal organic frameworks[J]. Chem Soc Rev,2018,47(22):8134−8172. doi: 10.1039/C8CS00256H
    [10]
    GAO P, LIU R, HUANG H, JIA X, PAN H. MOF-templated controllable synthesis of α-Fe2O3 porous nanorods and their gas sensing properties[J]. RSC Adv,2016,6(97):94699−94705. doi: 10.1039/C6RA21567J
    [11]
    LI Q, WU J, HUANG L, GAO J, ZHOU H, SHI Y, PAN Q, ZHANG G, DU Y, LIANG W. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes[J]. J Mater Chem A,2018,6(25):12115−12124. doi: 10.1039/C8TA02036A
    [12]
    CUI Y F, JIANG W, LIANG S, ZHU L F, YAO Y W. MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties[J]. J Mater Chem A,2018,6(30):14930−14938. doi: 10.1039/C8TA00269J
    [13]
    FANG Y, MA Y, ZHENG M, YANG P, ASIRI A M, WANG X. Metal-organic frameworks for solar energy conversion by photoredox catalysis[J]. Coord Chem Rev,2018,373:83−115. doi: 10.1016/j.ccr.2017.09.013
    [14]
    YUAN S, FENG L, WANG K, PANG J, BOSCH M, LOLLAR C, SUN Y, QIN J, YANG X, ZHANG P, WANG Q, ZOU L, ZHANG Y, ZHANG L, FANG Y, LI J, ZHOU H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv Mater,2018,30(37):e1704303. doi: 10.1002/adma.201704303
    [15]
    XUE D-X, WANG Q, BAI J. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coord Chem Rev,2019,378:2−16. doi: 10.1016/j.ccr.2017.10.026
    [16]
    YING M, TANG R, YANG W, LIANG W, YANG G, PAN H, LIAO X, HUANG J. Tailoring electronegativity of bimetallic Ni/Fe metal-organic framework nanosheets for electrocatalytic water oxidation[J]. ACS Appl Nano Mater,2021,4(2):1967−1975. doi: 10.1021/acsanm.0c03310
    [17]
    LIANG R, HUANG R, YING S, WANG X, YAN G, WU L. Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100(Fe) for the degradation of pharmaceuticals and personal care products under visible light[J]. J Nano Res,2017,11(2):1109−1123.
    [18]
    WANG C-C, DU X-D, LI J, GUO X-X, WANG P, ZHANG J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review[J]. App Catal B: Environ,2016,193:198−216. doi: 10.1016/j.apcatb.2016.04.030
    [19]
    KHAN N A, JHUNG S H. Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel[J]. Chem Eng J,2019,375.
    [20]
    GUO Q, ZHOU C, MA Z, YANG X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Adv Mater,2019,31(50):1901997. doi: 10.1002/adma.201901997
    [21]
    FUJIMOTO T M, PONCZEK M, ROCHETTO U L, LANDERS R, TOMAZ E. Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd[J]. Environ Sci Pollut Res Int,2017,24(7):6390−6396. doi: 10.1007/s11356-016-6494-7
    [22]
    LIN J Y, LEE J, WEN D O, KWON E, LIN K. Hierarchical zif-decorated nanoflower-covered 3-dimensional foam for enhanced catalytic reduction of nitrogen-containing contaminants[J]. J Colloid Interface Sci 2021, 602: 95-104.
    [23]
    HU W, YAN G, LIANG R, JIANG M, HUANG R, XIA Y, CHEN L, LU Y. Construction of a novel step-scheme CdS/Pt/Bi2MoO6 photocatalyst for efficient photocatalytic fuel denitrification[J]. RSC Adv,2021,11(38):23288−23300. doi: 10.1039/D1RA04417F
    [24]
    LIANG R, LIANG I, CHEN F, XIE P, WV Y, WANG X, YAN G, WV L. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification[J]. Chin J Catal,2020,41(1):188−199.
    [25]
    HUANG R, LIANG R, FAN H, YING S, WU L, WANG X, YAN G. Enhanced Photocatalytic fuel denitrification over TiO2/alpha-Fe2O3 nanocomposites under visible light irradiation[J]. Sci Rep,2017,7(1):7858. doi: 10.1038/s41598-017-08439-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2128) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return