Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
FANG Wei-li, WANG Liang, LI Chun-hu. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 446-455. doi: 10.1016/S1872-5813(21)60174-3
Citation: FANG Wei-li, WANG Liang, LI Chun-hu. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 446-455. doi: 10.1016/S1872-5813(21)60174-3

Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting

doi: 10.1016/S1872-5813(21)60174-3
Funds:  The project was supported by State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2018-k21).
More Information
  • Corresponding author: Tel: +86 0532 66782502. E-mail addresses: wangliang_good@163.com
  • Received Date: 2021-08-12
  • Rev Recd Date: 2021-09-09
  • Available Online: 2021-10-30
  • Publish Date: 2022-04-26
  • Z-scheme photocatalyst holds great promise in photocatalytic H2 evolution. In this work, a ternary Au-OVs-BiOBr-P25 Z-scheme photocatalyst with oxygen vacancies was successfully prepared, in which Au nanoparticles were used as the electron mediators to introduce into BiOBr and P25. The photocatalytic activity of this ternary photocatalyst was evaluated by overall water splitting. The H2 evolution rate of Au-OVs-BiOBr-P25 achieves an amazing value of 384 μmol/(g·h) under UV-vis irradiation. UV-vis DRS and transient photocurrent spectra revealed that the enhanced photocatalytic activity of Au-OVs-BiOBr-P25 was mainly attributed to its widened photo-response range and effective carrier separation. Furthermore, the photocatalytic mechanism was systematically studied by EPR and Photoelectrochemical measurements, which indicated that the overall water splitting occurred through the two-electron pathway. This result will provide us new ideas for developing more efficient photocatalysts for photocatalytic H2 evolution.
  • loading
  • [1]
    FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37−38. doi: 10.1038/238037a0
    [2]
    LIU J, LIU Y, LIU N Y, HAN Y Z, ZHANG X, HUANG H, LIFSHITZ Y, LEE S T, ZHONG J, KANG Z H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science,2015,347(6225):970−974. doi: 10.1126/science.aaa3145
    [3]
    RAZIQ F, HE J X, GAN J T, HUMAYUN M, FAHEEM M B, IQBAL A, HAYAT A, FAZAL S, YI J B, ZHAO Y, DHANABALAN K, WU X Q, MAVLONOV A, ALI T, HASSAN F, XIANG X, ZU X T, SHEN H H, LI S A, QIAO L. Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: Beyond the conventional 4-electron mechanism[J]. Appl Catal B: Environ,2020,270:118870. doi: 10.1016/j.apcatb.2020.118870
    [4]
    CAO S, CHAN T S, LU Y R, SHI X H, FU B, WU Z J, LI H M, LIU K, ALZUABI S, CHENG P, LIU M, LI T, CHEN X B, PIAO L Y. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes[J]. Nano Energy,2020,67:104287. doi: 10.1016/j.nanoen.2019.104287
    [5]
    WANG L C, CAO S, GUO K, WU Z J, MA Z, PIAO L Y. Simultaneous hydrogen and peroxide production by photocatalytic water splitting[J]. Chin J Catal,2019,40(3):470−475. doi: 10.1016/S1872-2067(19)63274-2
    [6]
    LOW J X, YU J G, JARONIEC M, WAGEH S, AL-GHAMDI A A. Heterojunction Photocatalysts[J]. Adv Mater,2017,29(20):1601694. doi: 10.1002/adma.201601694
    [7]
    XU Q L, ZHANG L Y, YU J G, WAGEH S, AL-GHAMDI A A, JARONIEC M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Mater Today,2018,21(10):1042−1063. doi: 10.1016/j.mattod.2018.04.008
    [8]
    NG B J, PUTRI L K, KONG X Y, PASBAKHSH P, CHAI S P. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1-x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition[J]. Chem Eng J,2021,404:127030. doi: 10.1016/j.cej.2020.127030
    [9]
    FU R R, ZENG X Q, MA L, GAO S M, WANG Q Y, WANG Z Y, HUANG B B, DAI Y, LU J. Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2−x/BiOCl heterojunctions[J]. J Power Sources,2016,312:12−22. doi: 10.1016/j.jpowsour.2016.02.038
    [10]
    REN X J, GAO M C, ZHANG Y F, ZHANG Z Z, CAO X Z, WANG B Y, WANG X X. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism[J]. Appl Catal B: Environ,2020,274:119063. doi: 10.1016/j.apcatb.2020.119063
    [11]
    SHI M, LI G N, LI J M, JIN X, TAO X P, ZENG B, PIDKO E A, LI R G, LI C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting[J]. Angew Chem Int Edit,2020,59(16):6590−6595. doi: 10.1002/anie.201916510
    [12]
    XUE C, ZHANG T X, DING S J, WEI J J, YANG G D. Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity[J]. ACS Appl Mater Inter,2017,9(19):16091−16102. doi: 10.1021/acsami.7b00433
    [13]
    CHOI Y I, JEON K H, KIM H S, LEE J H, PARK S J, ROH J E, KHAN M M, SOHN Y. TiO2/BiOX (X = Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation[J]. Sep Purif Technol,2016,160:28−42. doi: 10.1016/j.seppur.2016.01.009
    [14]
    RASHID J, ABBAS A, CHANG L C, IQBAL A, UL HAQ I, REHMAN A, AWAN S U, ARSHAD M, RAFIQUE M, BARAKAT M A. Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin[J]. Sci Total Environ,2019,665:668−677. doi: 10.1016/j.scitotenv.2019.02.145
    [15]
    OU G, XU Y S, WEN B, LIN R, GE B H, TANG Y, LIANG Y W, YANG C, HUANG K, ZU D, YU R, CHEN W X, LI J, WU H, LIU L M, LI Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat Commum,2018,9:1302. doi: 10.1038/s41467-018-03765-0
    [16]
    RAJARAMAN TS, PARIKH S P, GANDHI V G. Black TiO2: A review of its properties and conflicting trends[J]. Chem Eng J,2020,389:123918. doi: 10.1016/j.cej.2019.123918
    [17]
    WANG L, LV D D, DONG F, WU X L, CHENG N Y, SCOTT J, XU X, HAO W C, DU Y. Boosting visible-light-driven photo-oxidation of BiOCl by promoted charge separation via vacancy engineering[J]. ACS Sustainable Chem Eng,2019,7(3):3010−3017. doi: 10.1021/acssuschemeng.8b04454
    [18]
    LI H, SHANG J, AI Z H, ZHANG L Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J Am Chem Soc,2015,137(19):6393−6399. doi: 10.1021/jacs.5b03105
    [19]
    GAO Y Y, NIE W, ZHU Q H, WANG X, WANG S Y, FAN F T, LI C. The polarization effect in surface-plasmon-induced photocatalysis on Au/TiO2 nanoparticles[J]. Angew Chem Int Ed,2020,59(41):18218−18223. doi: 10.1002/anie.202007706
    [20]
    MA B, BI J L, LV J, KONG C C, YAN P X, ZHAO X T, ZHANG X J, YANG T, YANG Z M. Inter-embedded Au-Cu2O heterostructure for the enhanced hydrogen production from water splitting under the visible light[J]. Chem Eng J,2021,405:126709. doi: 10.1016/j.cej.2020.126709
    [21]
    LI X L, WANG T, TAO X Q, QIU G H, LI C, LI B X. Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene[J]. J Mater Chem A,2020,8(34):17657−17669. doi: 10.1039/D0TA05733A
    [22]
    LIAO Y, QIAN J, XIE G, HAN Q, DANG W Q, WANG Y S, LV L L, ZHAO S, LUO L, ZHANG W, JIANG H Y, TANG J W. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts[J]. Appl Catal B: Environ,2020,273:119054. doi: 10.1016/j.apcatb.2020.119054
    [23]
    YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci,2017,396:1775−1782. doi: 10.1016/j.apsusc.2016.11.219
    [24]
    HU X L, LI C Q, SONG J Y, ZHENG S L, SUN Z M. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. J Colloid Interf Sci,2020,574:61−73. doi: 10.1016/j.jcis.2020.04.035
    [25]
    XU X Y, WANG Z Y, QIAO W, LUO F T, HU J G, WANG D H, ZHOU Y. Refined Z-scheme charge transfer in facet-selective BiVO4/Au/CdS heterostructure for solar overall water splitting[J]. Int J Hydrogen Energy,2021,46(12):8531−8538. doi: 10.1016/j.ijhydene.2020.12.047
    [26]
    LI H B, LONG B, YE K H, CAI Y P, HE X Y, LAN Y Q, YANG Z J, JI H B. A recyclable photocatalytic tea-bag-like device model based on ultrathin Bi/C/BiOX (X = Cl, Br) nanosheets[J]. Appl Surf Sci,2020,515:145967. doi: 10.1016/j.apsusc.2020.145967
    [27]
    ZHU G L, LIN T Q, LU X J, ZHAO W, YANG C Y, WANG Z, YIN H, LIU Z Q, HUANG F Q, LIN J H. Black brookite titania with high solar absorption and excellent photocatalytic performance[J]. J Mater Chem A,2013,1(34):9650−9653. doi: 10.1039/c3ta11782k
    [28]
    WU J, LI X D, SHI W, LING P Q, SUN Y F, JIAO X C, GAO S, LIANG L, XU J Q, YAN W S, WANG C M, XIE Y. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers[J]. Angew Chem Int Ed,2018,57(28):8719−8723. doi: 10.1002/anie.201803514
    [29]
    XUE X L, CHEN R P, CHEN H W, HU Y, DING Q Q, LIU Z T, MA L B, ZHU G Y, ZHANG W J, YU Q, LIU J, MA J, JIN Z. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets[J]. Nano Letter,2018,18(11):7372−7377. doi: 10.1021/acs.nanolett.8b03655
    [30]
    GUO Y, ZHANG Y, TIAN N, HUANG H. Homogeneous {001}-BiOBr/Bi heterojunctions: Facile controllable synthesis and morphology-dependent photocatalytic activity[J]. ACS Sustainable Chem Eng,2016,4(7):4003−4012. doi: 10.1021/acssuschemeng.6b00884
    [31]
    BAI Y, CHEN T, WANG P Q, WANG L, YE L Q, SHI X, BAI W. Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation[J]. Solar Energy Mater Solar Cells,2016,157:406−414. doi: 10.1016/j.solmat.2016.07.001
    [32]
    YAO Y, SUN M X, YUAN X J, ZHU Y H, LIN X J, ANANDAN S. One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance[J]. Ultrasonics Sonochemistry,2018,49:69−78. doi: 10.1016/j.ultsonch.2018.07.025
    [33]
    LIANG J W, LIU Y X, SI Z C, WEI G D, WENG D, KANG F Y. Graphene quantum dots piecing together into graphene on nano Au for overall water splitting[J]. Carbon,2021,178:265−272. doi: 10.1016/j.carbon.2021.02.100
    [34]
    ZHANG W J, HU Y, YAN C Z, HONG D C, CHEN R P, XUE X L, YANG S Y, TIAN Y X, TIE Z X, JIN Z. Surface plasmon resonance enhanced direct Z-scheme TiO2/ZnTe/Au nanocorncob heterojunctions for efficient photocatalytic overall water splitting[J]. Nanoscale,2019,11(18):9053−9060. doi: 10.1039/C9NR01732A
    [35]
    LIN B, YANG G D, WANG L Z. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution[J]. Angew Chem Int Ed,2019,58(14):4587−4591. doi: 10.1002/anie.201814360
    [36]
    CHOI C H, KIM M, KWON H C, CHO S J, YUN S, KIM H T, MAYRHOFER K J J, KIM H, CHOI M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat Commun,2016,7:1302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (479) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return