Volume 50 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
LU Peng, FU Liang-liang, XU Zheng, BAI Hao-long, LI Ya-fu, BAI Ding-rong, XU Guang-wen. Experimental study on dynamic release and transformation of sulfur during pyrolysis of Shanxi high-sulfur anthracites based on MFBRA and XPS[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 693-702. doi: 10.1016/S1872-5813(21)60188-3
Citation: LU Peng, FU Liang-liang, XU Zheng, BAI Hao-long, LI Ya-fu, BAI Ding-rong, XU Guang-wen. Experimental study on dynamic release and transformation of sulfur during pyrolysis of Shanxi high-sulfur anthracites based on MFBRA and XPS[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 693-702. doi: 10.1016/S1872-5813(21)60188-3

Experimental study on dynamic release and transformation of sulfur during pyrolysis of Shanxi high-sulfur anthracites based on MFBRA and XPS

doi: 10.1016/S1872-5813(21)60188-3
Funds:  The project was supported by Liaoning Province "Xing Liao Talents Plan" project (XLYC1902021) and Key project of the Liaoning Joint Fund of the National Natural Science Foundation of China (U190820065).
  • Received Date: 2021-11-10
  • Accepted Date: 2021-12-27
  • Rev Recd Date: 2021-12-09
  • Available Online: 2022-01-06
  • Publish Date: 2022-06-25
  • Pyrolytic desulfurization of two Shanxi high-sulfur anthracites was investigated experimentally under hydrogen atmospheres using a micro fluidized bed reaction analyzer (MFBRA), the dynamic release behavior of sulfur-containing gas during pyrolysis was characterized by a rapid online gas analyzer, and the transformation between sulfur-containing components in the resultant char was analyzed based on morphological and XPS characterizations. The results show that the dynamic release of sulfur-containing gas features two intensity peaks at 530−560 ℃ and 812−830 ℃, respectively, indicating that the sulfur release proceeds by two subsequent processes: the reduction reaction of pyrite and the organic sulfur decomposition. The migration from inorganic to organic sulfur occurs predominately at lower temperatures, while the transformation between different forms of organic sulfur components is dominant at higher temperatures. Overall, the anthracite coal with a higher organic sulfur content has a higher sulfur removal efficiency in the hydrogen atmosphere. The research results provide the essential data supporting the development of highly efficient pyrolysis desulfurization technology for clean and efficient utilization of high sulfur anthracite coal resources.
  • loading
  • [1]
    ZHAO H B, JIN L J, WANG M Y, WEI B Y, HU H Q. Integrated process of coal pyrolysis with catalytic reforming of simulated coal gas for improving tar yield[J]. Fuel,2019,255(1):115797.1−115797.10.
    [2]
    刘汉斌, 马志斌, 郭彦霞, 程芳琴. 山西高硫高灰煤分布赋存特征及开发利用建议[J]. 中国矿业,2020,29(11):206−211.

    LIU Han-bin, MA Zhi-bin, GUO Yan-xia, CHENG Fang-qin. Occurrence characteristics and utilization suggestions of high sulfur and high ash coal in Shanxi province[J]. China Min Mag,2020,29(11):206−211.
    [3]
    王之正, 王利斌, 裴贤丰, 王岩, 白效言. 高硫煤热解脱硫技术研究现状[J]. 洁净煤技术,2014,20(2):76−79.

    WANG Zhi-zheng, WANG Li-bin, PEI Xian-feng, WANG Yan, BAI Xiao-yan. Desulfurization of high sulfur coal through pyrolysis[J]. Clean Coal Technol,2014,20(2):76−79.
    [4]
    YAN R, ZHU H J, ZHENG C G, XU M H. Emissions of organic hazardous air pollutants during Chinese coal combustion[J]. Energy,2002,27(5):485−503. doi: 10.1016/S0360-5442(02)00003-8
    [5]
    Chalcogens. New chalcogens study findings have been reported from Zhejiang University (Sulfur Transformation during Hydrothermal Dewatering of Low Rank Coal)[J]. Energy Weekly News, 2015.
    [6]
    LIU Q R, XIA H, HUANG G X, ZHANG C X, MA M J, WAN C. Desulphurization of high sulfur coal by mild pyrolysis combination with magnetic separation[J]. Adv Mater Res,2012,1528(455/456):998−1001.
    [7]
    王娜, 李文, 李保庆. 煤多段加氢热解过程的脱硫脱氮效应研究[J]. 燃料化学学报,2001,29(1):29−32. doi: 10.3969/j.issn.0253-2409.2001.01.006

    WANG Na, LI Wen, LI Bao-qin. Study on desulfurization and denitrification effect in multi-stage hydropyrolysis of coal[J]. J Fuel Chem Technol,2001,29(1):29−32. doi: 10.3969/j.issn.0253-2409.2001.01.006
    [8]
    高洪亮, 范晓伟, 王方, 于海龙, 杨晓明, 李冀静. 惰性气氛下煤热解脱硫的试验研究[J]. 热力发电,2008,37(10):28−30+48. doi: 10.3969/j.issn.1002-3364.2008.10.008

    GAO Hong-liang, FAN Xiao-wei, WANG Fang, YU Hai-long, YANG Xiao-ming, LI Ji-jing. Experimental study on coal pyrolysis desulfurization in inert atmosphere[J]. Thermal Power Gener,2008,37(10):28−30+48. doi: 10.3969/j.issn.1002-3364.2008.10.008
    [9]
    刘志红, 涂威, 韩正伟. 煤中硫在氩气气氛下迁移规律试验研究[J]. 煤炭技术,2018,37(2):310−312.

    LIU Zhi-hong, TU Wei, HAN Zheng-wei. Experimental study on migration patterns of sulfur in coal under argon atmosphere[J]. Coal Technol,2018,37(2):310−312.
    [10]
    高梅杉, 张建民, 罗鸣. 煤在还原性气氛下热解硫的析出机理研究进展[J]. 洁净煤技术,2005,11(1):34−38. doi: 10.3969/j.issn.1006-6772.2005.01.009

    GAO Hai-shan, ZHANG Jian-min, LUO Ming. Research progress on sulfur release mechanism of coal pyrolysis in reducing atmosphere[J]. Clean Coal Technol,2005,11(1):34−38. doi: 10.3969/j.issn.1006-6772.2005.01.009
    [11]
    吴晓丹, 胡浩权. 煤在不同气氛下热解脱硫研究进展[J]. 煤炭转化,2002,25(4):6−12. doi: 10.3969/j.issn.1004-4248.2002.04.003

    WU Xiao-dan, HU Hao-quan. Research progress of coal pyrolysis desulfurization in different atmospheres[J]. Coal Convers,2002,25(4):6−12. doi: 10.3969/j.issn.1004-4248.2002.04.003
    [12]
    刘少林, 孔娇, 申岩峰, 李挺, 杨暖暖, 王美君, 常丽萍. 高有机硫炼焦煤分选组分中硫的赋存形态及其热变迁行为研究[J]. 燃料化学学报,2019,47(8):915−924. doi: 10.3969/j.issn.0253-2409.2019.08.003

    LIU Shao-lin, KONG Jiao, SHEN Yan-feng, LI Ting, YANG Nuan-nuan, WANG Mei-jun, CHANG Li-ping. Sulfur occurrence and transformation during pyrolysis of the flotation fraction from coking coals with high organic sulfur[J]. J Fuel Chem Technol,2019,47(8):915−924. doi: 10.3969/j.issn.0253-2409.2019.08.003
    [13]
    ARIUNAA A, LI B Q, LI W, PUREVSUREN B, MUNKHJARGAL S, LIU F R, BAI Z Q, WANG G. Coal pyrolysis under synthesis gas, hydrogen and nitrogen[J]. J Fuel Chem Technol,2007,35(1):1−4. doi: 10.1016/S1872-5813(07)60007-3
    [14]
    HOU J L, MA Y, LI S Y, SHI J, HE L, LI J. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis[J]. Fuel,2018,231(1):134−144.
    [15]
    YU J, YUE J R, LIU Z E, DONG L, XU G W, ZHU J H, DUAN Z K, SUN L X. Kinetics and mechanism of solid reactions in a micro fluidized bed reactor[J]. AIChE J,2010,56(11):2905−2912. doi: 10.1002/aic.12205
    [16]
    HAN Z N, YUE J R, GENG S L, HU D D, LIU X J, BELLO S S, CUI Y B, BAI D R, XU G W. State-of-the-art hydrodynamics of gas-solid micro fluidized beds[J]. Chem Eng Sci,2021,232.
    [17]
    刘粉荣, 李文, 李保庆, 陈皓侃. 氧化性气氛下流化床中煤的热解脱硫及硫的分布[J]. 燃料化学学报,2006,34(4):404−407. doi: 10.3969/j.issn.0253-2409.2006.04.005

    LIU Fen-rong, LI Wen, LI Bao-qin, CHEN Hao-kan. Sulfur removal and its distribution during coal pyrolysis in fluidized bed reactor under oxidative atmospheres[J]. J Fuel Chem Technol,2006,34(4):404−407. doi: 10.3969/j.issn.0253-2409.2006.04.005
    [18]
    QI Y Q, LI W, CHEN H K, LI B Q. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere[J]. Fuel,2004,83(6):705−712. doi: 10.1016/j.fuel.2003.09.021
    [19]
    LIU X H, XU G W, GAO S Q. Micro fluidized beds: Wall effect and operability[J]. Chem Eng J,2008,137(2):302−307. doi: 10.1016/j.cej.2007.04.035
    [20]
    HAN Z N, YUE J R, ZENG X, YU J, WANG F, SUN S Z, YAO H, LUO G Q, LIU X J, SUN Y N, DING F, LFU L L, SHI L, WANG K J, YANG J B, WANG S N, CHEN X Q, BAI D R, XU G W. Characteristics of gas-solid micro fluidized beds for thermochemical reaction analysis[J]. Carbon Resour Convers,2020,3:203−218. doi: 10.1016/j.crcon.2020.12.005
    [21]
    HAN Z N, YUE J R, GENG S L, HU D D, L X J, SULEIMAN S B, CUI Y B, BAI D R, XU G W. Conditioning micro fluidized bed for maximal approach of gas plug flow[J]. Chem Eng J,2018,351:110−118. doi: 10.1016/j.cej.2018.06.076
    [22]
    余剑, 朱剑虹, 岳君容, 孙立鑫, 刘新华, 许光文. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报,2009,60(10):2669−2674.

    YU Jian, ZHU Jian-hong, YUE Jun-rong, SUN Li-xing, LIU Xin-hua, XU Guang-wen. Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. J Chem Ind Eng,2009,60(10):2669−2674.
    [23]
    王芳, 曾玺, 王永刚, 余剑, 岳君容, 张建岭, 许光文. 微型流化床与热重测定煤焦非等温气化反应动力学对比[J]. 化工学报,2015,66(5):1716−1722.

    WANG Fang, ZENG Xi, WANG Yong-gang, YU Jian, YUE Jun-rong, ZHANG Jian-ling, XU Guang-wen. Comparation of non-isothermal coal char gasification in micro fluidized bed and thermogravimetric analyzer[J]. J Chem Ind Eng,2015,66(5):1716−1722.
    [24]
    王芳, 曾玺, 韩江则, 张聚伟, 刘云义, 汪印, 李奡明, 余剑, 许光文. 微型流化床与热重测定煤焦-CO2气化反应动力学的对比研究[J]. 燃料化学学报,2013,41(4):407−413. doi: 10.3969/j.issn.0253-2409.2013.04.004

    WANG Fang, ZENG Xi, HAN Jiang-ze, ZHANG Ju-wei, LIU Yun-yi, WANG Yin, LI Ao-ming, YU Jian, XU Guang-wen. Comparation of char gasification kinetics studied by micro fluidized bed and by thermogravimetric analyzer[J]. J Fuel Chem Technol,2013,41(4):407−413. doi: 10.3969/j.issn.0253-2409.2013.04.004
    [25]
    YU J, ZENG X, ZHANG G Y, ZHANG J W, WANG Y, XU G W. Kinetics and mechanism of direct reaction between CO2 and Ca(OH)2 in micro fluidized bed[J]. EST,2013,47(13):7514−7520. doi: 10.1021/es4001196
    [26]
    IANG W W, HAO W Q, LIU X J, HAN Z N, YUE J R, XU G W. Characteristic and kinetics of light calcination of magnesite in micro fluidized bed reaction analyzer[J]. J Chem Ind Eng,2019,70(8):2928−2937.
    [27]
    YAN J N, XU L, YANG J L. A study on the thermal decomposition of coal-derived pyrite[J]. J Anal Appl Pyrolysis,2008,82(2):229−234. doi: 10.1016/j.jaap.2008.03.013
    [28]
    YANI S, ZHANG D. An experimental study into pyrite transformation during pyrolysis of Australian lignite samples[J]. Fuel,2009,89(7):1700−1708.
    [29]
    易平贵, 俞庆森, 宗汉兴. 黄铁矿化学脱硫的热力学分析[J]. 煤炭转化,1999,29(1):3−5.

    YI Ping-gui, YU Qin-seng, ZONG Han-xing. Thermodynamic analysis of chemical desulfurization of pyrite[J]. Coal Convers,1999,29(1):3−5.
    [30]
    LIU F R, LI W, CHEN H K, LI B Q. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel,2006,86(3):360−366.
    [31]
    GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J]. Fuel Process. Technol,2002,77:1−7.
    [32]
    陈鹏. 应用XPS研究煤中有机硫在脱硫时的存在形态[J]. 洁净煤技术,1997,3(2):17−20.

    CHEN Peng. Study on the existing forms of organic sulfur in coal during desulfurization by XPS[J]. Clean Coal Technol,1997,3(2):17−20.
    [33]
    ZHANG L J, LI Z H, YANG Y L, ZHOU Y B, LI J H, SI L L, KONG B. Research on the composition and distribution of organic sulfur in coal[J]. Molecules,2016,21(5):630. doi: 10.3390/molecules21050630
    [34]
    王之正, 王利斌, 裴贤丰, 赵奇, 白效言, 王岩. 沁能焦煤中各形态硫热解迁移规律研究[J]. 煤炭科学技术,2014,42(4):116−120.

    WANG Zhi-zheng, WANG Li-bin, PEI Xian-feng, ZHAO Qi, BAI Xiao-yan, WANG Yan. Transfer laws of various sulfur speciation during pyrolysis of Qinneng coking coal[J]. Coal Sci Technol,2014,42(4):116−120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (413) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return