Volume 50 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
GAO Pan, ZHAO Ze-heng, LIU Yu-tong, GUO De-zhong, YANG Shao-xia. Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 735-746. doi: 10.1016/S1872-5813(21)60190-1
Citation: GAO Pan, ZHAO Ze-heng, LIU Yu-tong, GUO De-zhong, YANG Shao-xia. Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 735-746. doi: 10.1016/S1872-5813(21)60190-1

Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk

doi: 10.1016/S1872-5813(21)60190-1
Funds:  The project was supported by the National Natural Science Foundation of China (51776070, 51206045) and the Fundamental Research Funds for Central Universities (2018MS033)
  • Received Date: 2021-10-19
  • Accepted Date: 2021-12-29
  • Rev Recd Date: 2021-12-06
  • Available Online: 2022-01-11
  • Publish Date: 2022-06-25
  • Corn straw was torrefied under at different temperatures and the torrefied products were characterized by proximate analysis, ultimate analysis, FT-IR, TGA and pyrolysis experiments; the effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk was investigated. The results indicate that the deoxidation efficiency and energy density of torrefied products under both atmospheric pressure (AP) and gas pressured (GP) conditions increase with the increase of torrefaction temperature. The temperature required for GP torrefaction is almost 40 °C lower than that for AP torrefaction to obtain the same mass yield. The energy yield, carbon yield, deoxidation efficiency and the energy density of GP-torrefied corn straw are 1.125, 1.142, 1.539 and 1.131 times higher than those of AP-torrefied one, respectively. The GP-torrefied corn straw shows better hydrophobicity and is easier to dehydrate. In addition, the pyrolysis of GP-torrefied corn straw produces significantly higher fractions of CH4 and H2 in the gaseous product than the pyrolysis of AP-torrefied one; meanwhile, the relative content of phenols in the liquid products for the pyrolysis of GP-torrefied samples also increases up to 51.11%, whereas the contents of furans and acids decrease considerably. All these suggest that GP torrefaction performs better in biofuel upgrading than AP torrefaction under the same temperature.
  • loading
  • [1]
    ZENG K, HE X, YANG H P, WANG X H, CHEN H P. The effect of combined pretreatments on the pyrolysis of corn stalk[J]. Bioresour Technol,2019,281:309−317. doi: 10.1016/j.biortech.2019.02.107
    [2]
    DAI L L, WANG Y P, LIU Y H, RUAN R, HE C, YU Z T, JIANG L, ZENG Z H, TIAN X J. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review[J]. Renewable Sustainable Energy Rev,2019,107:20−36. doi: 10.1016/j.rser.2019.02.015
    [3]
    CHEN Z W, WANG M F, JIANG E C, WANG D H, ZHANG K, REN Y Z, JIANG Y. Pyrolysis of Torrefied Biomass[J]. Trends Biotechnol,2018,36(12):1287−1298. doi: 10.1016/j.tibtech.2018.07.005
    [4]
    CHEN W H, PENG J H, BI X T T. A state-of-the-art review of biomass torrefaction, densification and applications[J]. Renewable Sustainable Energy Rev,2015,44:847−866. doi: 10.1016/j.rser.2014.12.039
    [5]
    HE Q, DING L, GONG Y, LI W F, WEI J T, YU G S. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis[J]. Bioresour Technol,2019,280:104−111. doi: 10.1016/j.biortech.2019.01.138
    [6]
    YUE Y, SINGH H, SINGH B, MANI S. Torrefaction of sorghum biomass to improve fuel properties[J]. Bioresour Technol,2017,232:372−379. doi: 10.1016/j.biortech.2017.02.060
    [7]
    LI S X, CHEN C Z, LI M F, XIAO X. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres[J]. Bioresour Technol,2018,249:348−353. doi: 10.1016/j.biortech.2017.10.026
    [8]
    WANG Z L, LIM C J, GRACE J R, LI H, PARISE M R. Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor[J]. Bioresour Technol,2017,244(Pt 1):281−288.
    [9]
    LI S X, ZOU J Y, LI M F, WU X F, BIAN J, XUE Z M. Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction[J]. Energy,2017,124:321−329. doi: 10.1016/j.energy.2017.02.079
    [10]
    XIN S Z, HUANG F, LIU X Y, MI T, XU Q L. Torrefaction of herbal medicine wastes: Characterization of the physicochemical properties and combustion behaviors[J]. Bioresour Technol,2019,287:121408. doi: 10.1016/j.biortech.2019.121408
    [11]
    XIN S Z, MI T, LIU X Y, HUANG F. Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues[J]. Energy,2018,152:586−593. doi: 10.1016/j.energy.2018.03.104
    [12]
    MENG J J, MOORE A, TILOTTA D C, KELLEY S S, ADHIKARI S, PARKT S. Thermal and storage stability of bio-oil from pyrolysis of Torrefied wood[J]. Energy Fuels,2015,29(8):5117−5126. doi: 10.1021/acs.energyfuels.5b00929
    [13]
    CHEN D Y, ZHENG Z C, FU K X, ZENG Z, WANG J J, LU M T. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products[J]. Fuel,2015,159:27−32. doi: 10.1016/j.fuel.2015.06.078
    [14]
    ONSREE T, TIPPAYAWONG N, WILLIAMS T, MCCULLOUGH K, BARROW E, POGAKU R, LAUTERBACH J. Torrefaction of pelletized corn residues with wet flue gas[J]. Bioresour Technol,2019,285:121330. doi: 10.1016/j.biortech.2019.121330
    [15]
    BERRUECO C, RECARI J, GÜELL B M, DEL ALAMO G. Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed[J]. Energy,2014,70:68−78. doi: 10.1016/j.energy.2014.03.087
    [16]
    CHEN Y J, ZHANG L, ZHANG Y T, LI A M. Pressurized pyrolysis of sewage sludge: Process performance and products characterization[J]. J Anal Appl Pyrolysis,2019,139:205−212. doi: 10.1016/j.jaap.2019.02.007
    [17]
    MANYÀ J J, AZUARA M, MANSO J A. Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions[J]. Biomass Bioenergy,2018,117:115−123. doi: 10.1016/j.biombioe.2018.07.019
    [18]
    WANNAPEERA J, WORASUWANNARAK N. Upgrading of woody biomass by torrefaction under pressure[J]. J Anal Appl Pyrolysis,2012,96:173−180. doi: 10.1016/j.jaap.2012.04.002
    [19]
    TONG S, XIAO L, LI X, ZHU X Q, LIU H, LUO G Q, WORASUWANNARAK N, KERDSUWAN S, FUNGTAMMASAN B, YAO H. A gas-pressurized torrefaction method for biomass wastes[J]. Energy Convers Manage,2018,173:29−36. doi: 10.1016/j.enconman.2018.07.051
    [20]
    SUN Y M, TONG S, LI X, WANG F, HU Z Z, DACRES O D, EDREIS E M A, WORASUWANNARAK N, SUN M Y, LIU H. Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass[J]. Bioresour Technol,2021,319:124216. doi: 10.1016/j.biortech.2020.124216
    [21]
    AGAR D, DEMARTINI N, HUPA M. Influence of Elevated Pressure on the Torrefaction of Wood[J]. Energy Fuels,2016,30(3):2127−2136. doi: 10.1021/acs.energyfuels.5b01352
    [22]
    NHUCHHEN D R, BASU P. Experimental Investigation of Mildly Pressurized Torrefaction in Air and Nitrogen[J]. Energy Fuels,2014,28(5):3110−3121. doi: 10.1021/ef4022202
    [23]
    ZHANG Y, SONG K Y. Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere[J]. Energy,2018,165:235−245.
    [24]
    ITOH T, IWABUCHI K, MAEMOKU N, SASAKI I, TANIGURO K. A new torrefaction system employing spontaneous self-heating of livestock manure under elevated pressure[J]. Waste Manag,2019,85:66−72. doi: 10.1016/j.wasman.2018.12.018
    [25]
    MEDIC D, DARR M, SHAH A, RAHN S. Effect of torrefaction on water vapor adsorption properties and resistance to microbial degradation of corn stover[J]. Energy Fuels,2012,26(4):2386−2393. doi: 10.1021/ef3000449
    [26]
    CHENG X X, HUANG Z, WANG Z Q, MA C Y, CHEN S Y. A novel on-site wheat straw pretreatment method: Enclosed torrefaction[J]. Bioresour Technol,2019,281:48−55. doi: 10.1016/j.biortech.2019.02.075
    [27]
    YAN W, PEREZ S, SHENG K C. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization[J]. Fuel,2017,196:473−480. doi: 10.1016/j.fuel.2017.02.015
    [28]
    UEMURA Y, SAADON S, OSMAN N, MANSOR N, TANOUE K. Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide[J]. Fuel,2015,144:171−179. doi: 10.1016/j.fuel.2014.12.050
    [29]
    SUN Y M, TONG S, LI X, HU Z Z, SUN M Y, GUO L LIU H, HU H Y, LUO G Q, YAO H. Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature[J]. Fuel,2022,308:122029. doi: 10.1016/j.fuel.2021.122029
    [30]
    YANG H P, LIU M, CHEN Y Q, XIN S Z, ZHANG X, WAMG X H, CHEN H P. Vapor–solid interaction among cellulose, hemicellulose and lignin[J]. Fuel,2020,263:116681. doi: 10.1016/j.fuel.2019.116681
    [31]
    WANNAPEERA J, WORASUWANNARAK N. Examinations of chemical properties and pyrolysis behaviors of torrefied woody biomass prepared at the same torrefaction mass yields[J]. J Anal Appl Pyrolysis,2015,115:279−287. doi: 10.1016/j.jaap.2015.08.007
    [32]
    MA Z Q, WANG J H, YANG Y Y, ZHANG Y, ZHAO C, YU Y M, WANG S R. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches[J]. J Anal Appl Pyrolysis,2018,134:12−24. doi: 10.1016/j.jaap.2018.04.002
    [33]
    WIGLEY T, YIP A C K, PANG S S. The use of demineralisation and torrefaction to improve the properties of biomass intended as a feedstock for fast pyrolysis[J]. J Anal Appl Pyrolysis,2015,113:296−306. doi: 10.1016/j.jaap.2015.02.007
    [34]
    HAN Z, ZENG X, YAO C, XU G. Oxygen migration in torrefaction of eupatorium adenophorum spreng. and its improvement on fuel properties[J]. Energy Fuels,2015,29(11):7275−7283. doi: 10.1021/acs.energyfuels.5b01318
    [35]
    CHEN D Y, GAO A J, CEN K H, ZHANG J, CAO X B, MA Z Q. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin[J]. Energy Convers Manage,2018,169:228−237. doi: 10.1016/j.enconman.2018.05.063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (328) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return