Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
ZHANG Xiang-yue, WAN Hai, GAO Yuan, BAO Jin-qi, ZHANG Hai-juan. Effect of propylene in feedstock on the coking behavior of PtSnK/Al2O3 catalyst of propane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 841-848. doi: 10.1016/S1872-5813(21)60196-2
Citation: ZHANG Xiang-yue, WAN Hai, GAO Yuan, BAO Jin-qi, ZHANG Hai-juan. Effect of propylene in feedstock on the coking behavior of PtSnK/Al2O3 catalyst of propane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 841-848. doi: 10.1016/S1872-5813(21)60196-2

Effect of propylene in feedstock on the coking behavior of PtSnK/Al2O3 catalyst of propane dehydrogenation

doi: 10.1016/S1872-5813(21)60196-2
Funds:  The project was supported by Joint Fundation of Liaoning Province of China (U1908203) and Educational Commission of Liaoning Province of China (L20190008).
  • Received Date: 2022-01-07
  • Accepted Date: 2022-01-26
  • Rev Recd Date: 2022-01-24
  • Available Online: 2022-02-16
  • Publish Date: 2022-08-01
  • The dehydrogenation of propane was carried out with propane containing different proportions of propylene, and the carbon deposition behavior of Pt-based catalyst under propene-rich condition was investigated. The results show that the presence of propylene in the raw material accelerates the rate of carbon deposition, shortening the time of dynamic equilibrium of carbon deposition on the support, and promoting the formation of carbon on the surface area of the active phase and the graphitization of carbon deposition. At the same time, the rich propylene in the raw material increases the amount of unsaturated aliphatic compounds, thus promoting the generation of aromatic carbon and graphitized carbon, but the catalyst structure is not destroyed. In the process of propane dehydrogenation, when the propylene content increases to 1.5%, the carbon “peak I” appears on the surface of the active phase, and the "peak II" moves to the high temperature region. When the alkene content increases by 3.0%, peak I and peak II merge together, and the area of the entire peak increases significantly. When the carbon deposition exceeds 10.26%, the degree of carbon deposition and graphitization of the catalyst becomes higher and higher. The increase of the propylene content accelerates the saturation process of the carbon holding capacity of the carrier. Under the same reaction time, the amount of carbon deposit increases.
  • loading
  • [1]
    TALLMAN M J, KLAVERS R. North American olefin producers riding the shale gas wave[J]. Hydrocarbon Process,2013,4:37−40.
    [2]
    SANFILIPPO D, MIRACCA I. Dehydrogenation of paraffins: Synergies between catalyst design and reactor engineering[J]. Catal Today,2006,111:133−139. doi: 10.1016/j.cattod.2005.10.012
    [3]
    ZHANG X T, HE N, LIU C Y, GUO H C. Pt-Cu alloy nanoparticles encapsulated in silicalite-1 molecular sieve: Coke-resistant catalyst for alkane dehydrogenation[J]. Catal Lett,2019,149:974−984. doi: 10.1007/s10562-019-02671-4
    [4]
    LU J L, FU B S, KUNG M C, XIAO G M, ELAM J W, KUNG H H, STAIR P C. Coking and sintering resistant palladium catalysts achieved through atomic layer deposition[J]. Science,2012,335(6073):1205−1208. doi: 10.1126/science.1212906
    [5]
    WEERACHON T, KONGKIAT S, PIYASAN P, JOONGJAI P. Enhanced stability and propene yield in propane dehydrogenation on PtIn/Mg(Al)O catalysts with various in loadings[J]. Top Catal,2018,61:1624−1632. doi: 10.1007/s11244-018-1008-0
    [6]
    李庆, 隋志军, 朱贻安, 周兴贵. Pt催化丙烷脱氢过程中结焦反应的粒径效应与Sn的作用[J]. 化工学报,2013,64(2):525−531.

    LI Qing, SUI Zhi-jun, ZHU Yi-an, ZHOU Xing-gui. Formation of coke on Pt catalysts during propane dehydrogenation: effect of Pt particle size and Sn addition[J]. CIESC J(China),2013,64(2):525−531.
    [7]
    IGLESIAS-JUEZ A, BEALE A M, MAAIJEN K, WENG T C, GLATZEL P, WECKHUYSEN B M. A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions[J]. J Catal,2010,276(2):268−279. doi: 10.1016/j.jcat.2010.09.018
    [8]
    WOLF M, RAMAN N, TACCARDI N, HORN R, HAUMANN M, WASSERSCHEID P. Capturing spatially resolved kinetic data and coking of Ga-Pt supported catalytically active liquid metal solutions during propane dehydrogenation in situ[J]. Faraday Discuss,2021,229:359−377. doi: 10.1039/D0FD00010H
    [9]
    DAI Y, WU Y, DAI H, GAO X, TIAN S Y, GU J J, YI X F, ZHENG A M, YANG Y H. Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation[J]. J Catal,2021,395:105−116. doi: 10.1016/j.jcat.2020.12.021
    [10]
    WOLF M, NARAYANAN RAMAN D, TACCARDI N, HAUMANN M, WASSERSCHEID P. Coke formation during propane dehydrogenation over Ga-Rh supported catalytically active liquid metal solutions[J]. ChemCatChem,2020,12(4):1085−1094. doi: 10.1002/cctc.201901922
    [11]
    YE G, WANG H, DUAN X, SUI Z, ZHOU X, COPPENS M O, YUAN W. Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation[J]. AIChE J,2019,65(1):140−150. doi: 10.1002/aic.16410
    [12]
    LARSSON M, HULTÉN M, BLEKKAN E A, ANDERSSON B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation[J]. J Catal,1996,164(1):44−53. doi: 10.1006/jcat.1996.0361
    [13]
    张海娟, 王振宇, 李江红, 乔凯, 张舒冬. 反应条件对丙烷脱氢催化剂积碳行为的影响[J]. 天然气化工,2014,39(2):38−42.

    ZHANG Hai-juan, WANG Zhen-yu, LI Jiang-hong, QIAO Kai, ZHAGN Shu-dong. Effect of reaction conditions on coke formation over the catalyst for propane dehydrogenation[J]. Nat Gas Chem Ind,2014,39(2):38−42.
    [14]
    IBARRA J V, ROYO C, MONZÓN A, SANTAMARÍA J. Fourier transform infrared spectroscopic study of coke deposits on a Cr2O3-Al2O3 catalyst[J]. Vib Spectrosc,1995,9(2):191−196. doi: 10.1016/0924-2031(95)00005-F
    [15]
    SATTLER J J H B, BEALE A M, WECKHUYSEN B M. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts[J]. Phys Chem Chem Phys,2013,15(29):12095−12103. doi: 10.1039/c3cp50646k
    [16]
    吴睿, 王海之, 张健, 隋志军, 朱贻安, 周兴贵. Pt系催化剂丙烷脱氢结焦性质比较[J]. 天然气化工-C1化学与化工,2017,42(5):46−51.

    WU Rui, WANG Hai-zhi, ZHANG Jian, SUI Zhi-jun, ZHU Yi-an, ZHOU Xing-gui. Characterization of cokes formed on Pt-based catalyst for propane dehydrogenation[J]. Nat Gas Chem Ind,2017,42(5):46−51.
    [17]
    LI Q, SUI Z, ZHOU X, ZHU Y, ZHOU J, CHEN D. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: Coke characterization and kinetic study[J]. Top Catal,2011,54:888−896. doi: 10.1007/s11244-011-9708-8
    [18]
    UKPONG A M. Ab initio studies of propane dehydrogenation to propene with graphene[J]. Mol Phys,2020,118(24):e1798527. doi: 10.1080/00268976.2020.1798527
    [19]
    LI Q, YANG G, WANG K, WANG X. Preparation of carbon-doped alumina beads and their application as the supports of Pt-Sn-K catalysts for the dehydrogenation of propane[J]. React Kinet, Mech Catal,2020,129(2):805−817. doi: 10.1007/s11144-020-01753-4
    [20]
    RUELAS-LEYVA J P, MALDONADO-GARCIA L F, TALAVERA-LOPEZ A, SANTOS-LÓPEZ I A, PICOS-CORRALES L A, SANTOLALLA-VARGAS C E, GOMEZ-TORRES S A, FUENTES G A. A comprehensive study of coke deposits on a Pt-Sn/SBA-16 catalyst during the dehydrogenation of propane[J]. Catalysts,2021,11(1):128. doi: 10.3390/catal11010128
    [21]
    CHEN S, ZHAO Z J, MU R, CHANG X, LUO J, PURDY S C, KROPF J, SUN G D, PEI C L, MILLER J T, ZHOU X H, VOVK E, YANG Y, GONG J L. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts[J]. Chem,2021,7(2):387−405. doi: 10.1016/j.chempr.2020.10.008
    [22]
    SRICHAROEN C, JONGSOMJIT B, PANPRANOT J, PRASERTHDAM P. The key to catalytic stability on sol-gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehydrogenation[J]. Catal Today,2021,375:343−351. doi: 10.1016/j.cattod.2020.05.053
    [23]
    徐志康, 黄佳露, 王廷海, 岳源源, 白正帅, 鲍晓军, 朱海波. 丙烷脱氢制丙烯催化剂的研究进展[J]. 化工进展,2021,40(4):1893−1916.

    XU Zhi-kang, HUANG Jia-lu, WANG Ting-hai, YUE Yuan-yuan, BAI Zheng-shuai, BAO Xiao-jun, ZHU Hai-bo. Advances in catalysts for propane dehydrogenation to propylene[J]. Chem Ind Eng Prog,2021,40(4):1893−1916.
    [24]
    KUMAR M S, CHEN D, WALMSLEY J C, HOLMEN A. Dehydrogenation of propane over Pt-SBA-15: Effect of Pt particle size[J]. Catal Commun,2008,9(5):747−750. doi: 10.1016/j.catcom.2007.08.015
    [25]
    CAI W, MU R, ZHA S, SUN G, CHEN S, ZHAO Z J, LI H, TIAN H, TANG Y, TAO F, ZENG L, GONG J. Subsurface catalysis-mediated selectivity of dehydrogenation reaction[J]. Sci Adv,2018,4(8):eaar5418. doi: 10.1126/sciadv.aar5418
    [26]
    XIAO L, MA F, ZHU Y A, SUI Z J, ZHOU J H, ZHOU X G, CHEN D, YUAN W K. Improved selectivity and coke resistance of core-shell alloy catalysts for propane dehydrogenation from first principles and microkinetic analysis[J]. Chem Eng J,2019,377:120049. doi: 10.1016/j.cej.2018.09.210
    [27]
    NAKAYA Y, HIRAYAMA J, YAMAZOE S, SHIMIZU K I, FURUKAWA S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nat Commun,2020,11(1):1−7. doi: 10.1038/s41467-019-13993-7
    [28]
    CHEN S, CHANG X, SUN G, ZHANG T, XU Y, WANG Y, PEI C L, GONG J. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies[J]. Chem Soc Rev,2021,50(5):3315−3354. doi: 10.1039/D0CS00814A
    [29]
    FARJOO A, KHORASHEH F, NIKNADDAF S, SOLTANI M. Kinetic modeling of side reactions in propane dehydrogenation over Pt-Sn/γ - Al2O3 catalyst[J]. Sci Iran,2011,18(3):458−464. doi: 10.1016/j.scient.2011.05.009
    [30]
    JANG E J, LEE J, JEONG H Y, KWAK J H. Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts[J]. Appl Catal A: Gen,2019,572:1−8.
    [31]
    VAN Doom J, MOULIJN J A. Extraction of spent hydrotreating catalysts studied by Fourier transform infra-red spectroscopy[J]. Fuel Process Technol,1990,26(1):39−51. doi: 10.1016/0378-3820(90)90022-K
    [32]
    DUMONT M, CHOLLON G, DOURGES M A, PAILLER R, BOURRAT X, NASLAIN R, BRUNEEL J L, COUZI M. Chemical, microstructural and thermal analyses of a naphthalene-derived mesophase pitch[J]. Carbon,2002,40(9):1475−1486. doi: 10.1016/S0008-6223(01)00320-7
    [33]
    LI J, NAGA K, OHZAWA Y, NAKAJIMA T, SHAMES A I, PANICH A M. Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery[J]. J Fluorine Chem,2005,126(2):265−273. doi: 10.1016/j.jfluchem.2004.09.034
    [34]
    KAYLOR N, DAVIS R J. Propane dehydrogenation over supported Pt-Sn nanoparticles[J]. J Catal,2018,367:81−193. doi: 10.1016/j.jcat.2018.08.014
    [35]
    FAN X, LI J, ZHAO Z, WEI Y, LIU J, DUAN A, JIANG G. Dehydrogenation of propane over PtSnAl/SBA-15 catalysts: Al addition effect and coke formation analysis[J]. Catal Sci Technol,2015,5:339−350. doi: 10.1039/C4CY00951G
    [36]
    VU B K, SONG M B, AHN I Y, SUH Y W, SUH D J, KIM J S, SHIN E W. Location and structure of coke generated over Pt-Sn/Al2O3 in propane dehydrogenation[J]. J Ind Eng Chem,2011,17:71−76. doi: 10.1016/j.jiec.2010.10.011
    [37]
    VORONETSKII M S, DIDENKO L P, SAVCHENKO V I. Equilibrium conditions for the minimum coke formation during the dehydrogenation of propane[J]. Russ J Phys Chem B,2009,3(2):216−222. doi: 10.1134/S1990793109020079
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (324) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return