Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
WANG Meng-rong, WANG Lu-yuan, ZHANG Xing-yu, CHENG Xing-xing, WANG Zhi-qiang. Influence mechanism of trace K element on NOx adsorption of coal-based carbon materials at low temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 884-895. doi: 10.1016/S1872-5813(21)60199-8
Citation: WANG Meng-rong, WANG Lu-yuan, ZHANG Xing-yu, CHENG Xing-xing, WANG Zhi-qiang. Influence mechanism of trace K element on NOx adsorption of coal-based carbon materials at low temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 884-895. doi: 10.1016/S1872-5813(21)60199-8

Influence mechanism of trace K element on NOx adsorption of coal-based carbon materials at low temperature

doi: 10.1016/S1872-5813(21)60199-8
  • Received Date: 2021-11-26
  • Accepted Date: 2022-02-16
  • Rev Recd Date: 2022-01-10
  • Available Online: 2022-02-25
  • Publish Date: 2022-08-01
  • In this paper, Zhundong coal was used as the precursor of carbon material followed by activation by hydrothermal coupling with trace amount of K element. The influence of K concentration on the adsorption performance of as-prepared carbon material of NOx at low temperature was studied. The experimental results showed that when the concentration of K2CO3 in the activation solution was 0.0067 g/mL, the sample had good NOx adsorption performance, and the saturated NOx adsorption time was 3200 s. The pore structure of the sample developed well with the specific surface area of 708.6 m2/g. The samples were characterized by XPS, SEM and the adsorption process was studied by FT-IR. It was found that excellent adsorption properties of Zhundong coal derived carbon material were related with the surface structure. DFT method was employed to verify the reaction mechanism. The results showed that K could promote the formation of C–O bond which was the key factor for promoting the NOx adsorption. The best method and optimal process parameters for preparing Zhundong coal-based carbon materials by hydrothermal coupling with trace amount of K were obtained.
  • loading
  • [1]
    方叠, 钱跃东, 王勤耕, 段宁. 区域复合型大气污染调控模型研究[J]. 中国环境科学,2013,3(7):1215−1222.

    FANG Die, QIAN Yue-dong, WANG Qin-geng, DUAN Ning. An optimization model for regional complex air pollution control[J]. Chin Environ Sci,2013,3(7):1215−1222.
    [2]
    薛文博, 王金南, 杨金田, 雷宇, 燕丽, 贺晋瑜, 韩宝平. 淄博市大气污染特征模型模拟及环境容量估算[J]. 环境科学,2013,34(4):1264−1269.

    XUE Wen-bo, WANG Jin-nan, YANG Jin-tian, LIN Yu, YAN Li, HE Jin-yu, HAN Bao-ping. Simulation of air pollution characteristics and estimates of environal capacity in Zibo city[J]. Environ Sci,2013,34(4):1264−1269.
    [3]
    张稼轩, 李博, 王颖, 李雪超, 张晗. 河谷城市大气环境容量的研究[J]. 环境科学研究,2020,33(4):801−808.

    ZHANG Jia-xuan, LI Bo, WANG Ying, LI Xue-chao, ZHANG Han. Atmospheric environal capacity in river valley terrain[J]. Res Environ Sci,2020,33(4):801−808.
    [4]
    张世秋. 通过制度变革推进区域复合型大气污染的防控与管理[J]. 环境保护,2012,(6):73−76. doi: 10.3969/j.issn.0253-9705.2012.06.019

    ZHANG Shi-qiu. Promote the prevention and control and management of regional compound air pollution through institutional reform[J]. Environ Pot,2012,(6):73−76. doi: 10.3969/j.issn.0253-9705.2012.06.019
    [5]
    代生福, 李永峰. 我国经济新常态背景下的煤炭企业发展战略[J]. 能源技术与管理,2015,40(6):190−193. doi: 10.3969/j.issn.1672-9943.2015.06.071

    DAI Sheng-fu, LI Yong-feng. Development strategy of coal enterprises under the background of China's new normal economy[J]. Energy Technol Manage,2015,40(6):190−193. doi: 10.3969/j.issn.1672-9943.2015.06.071
    [6]
    JABLONSKA M, PALKOVITS R. Nitrogen oxide removal over hydrotalcite–derived mixed metal oxides[J]. Catal Sci Technol,2016,6(1):49−72.
    [7]
    TSUJI K, SHIRAISHI I. Combined desulfurization, denitrification and reduction of air toxics using activated coke. 2. Process applications and performance of activated coke[J]. Fuel,1997,76(6):555−560. doi: 10.1016/S0016-2361(97)00022-7
    [8]
    TSUCHIYA Y, YAMAYA Y, AMANO Y, MACHIDA M. Effect of two types of adsorption sites of activated carbon fibers on nitrate ion adsorption[J]. J Environ Manag,2021,289:112484.
    [9]
    WANG S Q, XU S S, GAO S W, XIAO P, JIANG M H, ZHAO H, HUANG B, LIU L B, NIU H W, WANG J Y, GUO D F. Simultaneous removal of SO2 and NOx from flue gas by low-temperature adsorption over activated carbon[J]. Sci Reports, 2021, 11(1).
    [10]
    GRANGER P, WU J X, BA H, BAAZIZ W, ERSEN O, ZAFEIRATOS S, NHUT JM, GIAMBASTIANI G, PHAM HUU C. Cooperative effect of Pt single-atoms and nanoparticles supported on carbonaceous materials: Catalytic NO decomposition as a probe reaction[J]. Appl Catal A: Gen,2021,617:118103.
    [11]
    贺新福, 张小琴, 安得宁, 吴红菊, 周安宁. 低阶型煤热解半焦制备活性炭的试验研究[J]. 煤炭技术,2017,36(4):290−293.

    HE Xin-fu, ZHANG Xiao-qin, AN De-ning, WU Hong-ju, ZHOU An-ning. Experimental study on preparation of activated carbon from pyrolysis of semi-coke of low-rank briquette[J]. Coal Technol,2017,36(4):290−293.
    [12]
    AN D H, XIANG W, CHENG X X, CUI L, ZHANG X Y, ZHOU P, DONG Y. Regeneration performance of activated coke for elemental mercury removal by microwave and thermal methods[J]. Fuel Proc Technol,2020,199:106303.
    [13]
    WANG L Y, CHENG X X, WANG Z Q, MA C Y, QIN Y K. Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO[J]. Appl Catal B: Environ,2017,201:636−651. doi: 10.1016/j.apcatb.2016.08.021
    [14]
    王鲁元, 程星星, 张兴宇, 马春元. CeO2纳米棒负载Co催化CO脱除NOx的机理[J]. 化工学报,2016,67(z1):260−269.

    WANG Lu-yuan, CHENG Xing-xing, ZHANG Xing-yu, MA Chun-yuan. Mechanism of NOx removal by Co catalyzed by CeO2 nanorods[J]. J Chem Ind,2016,67(z1):260−269.
    [15]
    YANG J, REN S, ZHANG T S, SU Z H, LONG H M, KONG M, YAO L. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chem Eng J,2020,379:122398.
    [16]
    YAN W X, LI S G, FAN C G, DENG S. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel,2017,204:40−46. doi: 10.1016/j.fuel.2017.05.045
    [17]
    FU Y L, ZHANG Y F, LI G Q, ZHANG J, GUO Y J. NO removal activity and surface characterization of activated carbon with oxidation modification[J]. J Energy Inst,2017,90(5):813−823. doi: 10.1016/j.joei.2016.06.002
    [18]
    LIU H, LI J Y, XIANG K S, HE S D, SHEN F H. DFT and experimental studies on the mechanism of mercury adsorption on O2-/NO-codoped porous carbon[J]. ACS Omega,2021,6(18):12343−12350. doi: 10.1021/acsomega.1c01391
    [19]
    赵彤. C–O单键官能团在半焦–NO反应中的作用[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018.

    ZHAO Tong. Role of C–O single bond Functional groups in char-NO reaction[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2018.
    [20]
    DING S, LI Y R, ZHU T Y, GUO Y Y. Regeneration performance and carbon consumption of semi-coke and activated coke for SO2 and NO removal[J]. J Environ Sci,2015,34:37−43. doi: 10.1016/j.jes.2015.02.004
    [21]
    王鲁元. 基于半焦载体催化剂的一氧化碳催化脱硝性能研究[D]. 济南: 山东大学, 2018.

    WANG Lu-yuan. Study on catalytic denitrification performance of carbon monoxide based on semi-coke carrier catalyst[D]. Jinan: Shandong University, 2018.
    [22]
    WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. J Materials Chem,2012,22(45):23710−23725. doi: 10.1039/c2jm34066f
    [23]
    SCHRODER H, CREON A, SCHWABE T. Reformulation of the D-3(Becke-Johnson) dispersion correction without resorting to higher than C–6 dispersion coefficients[J]. J Chem Theory Comput,2015,11(7):3163−3170. doi: 10.1021/acs.jctc.5b00400
    [24]
    HE K, ROBERTSON A W, FAN Y, CHRISTOPHER S A, LIN Y C, KAZU S, ANGUS I K, JAMIE H W. Temperature dependence of the reconstruction of zigzag edges in graphene[J]. Acs Nano,2015,9(5):4786−4795. doi: 10.1021/acsnano.5b01130
    [25]
    张秀霞, 伍慧喜, 谢苗, 林日亿, 周志军, 吕晓雪. 钠对焦炭非均相还原NO的微观作用机理[J]. 燃料化学学报,2020,48(6):663−673. doi: 10.3969/j.issn.0253-2409.2020.06.004

    ZHANG Xiu-xia, WU Hui-xi, XIE Miao, LIN Ri-yi, ZHOU Zhi-jun, LV Xiao-xue. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol,2020,48(6):663−673. doi: 10.3969/j.issn.0253-2409.2020.06.004
    [26]
    张秀霞, 周俊虎, 周志军, 刘建忠, 岑可法. 煤粉再燃中煤焦异相还原NO机理的量化研究[J]. 燃烧科学与技术,2011,17(2):155−159.

    ZHANG Xiu-xia, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanisms of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol,2011,17(2):155−159.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (391) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return