Volume 50 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LIU Zhi-gang, TIAN Xiang-hong, LI Yan-qin. Study on CO/CO2 formation mechanism of Zigzag model coke with high oxygen coverage based on DFT theory[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 974-983. doi: 10.1016/S1872-5813(22)60001-X
Citation: LIU Zhi-gang, TIAN Xiang-hong, LI Yan-qin. Study on CO/CO2 formation mechanism of Zigzag model coke with high oxygen coverage based on DFT theory[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 974-983. doi: 10.1016/S1872-5813(22)60001-X

Study on CO/CO2 formation mechanism of Zigzag model coke with high oxygen coverage based on DFT theory

doi: 10.1016/S1872-5813(22)60001-X
Funds:  The project was supported by the National Natural Science Foundation of China (51676175).
  • Received Date: 2021-12-23
  • Accepted Date: 2022-02-22
  • Rev Recd Date: 2022-02-13
  • Available Online: 2022-03-01
  • Publish Date: 2022-08-26
  • The clean and efficient utilization of carbon resources is becoming more and more important, in energy, material, and chemical engineering field, but the mechanism of coke oxidation, especially that of the CO2/CO desorption is not fully studied yet. In this paper, density functional theory was used to study the oxidation mechanism of Zigzag char structure with high coverage of O2, which is related to an oxidation under lower temperature or high pressure. Based on the corresponding quantum chemistry calculation, it is shown that there are several possible pathways for the CO2 desorption process, which may need rearrange to form the structure containing O−C−O clusters. And successively, multiple intermediate reaction steps are required to complete the desorption of CO2. Other than in the literature that the COO–O–C functional group formed first, with then the C–O bond broken and CO2 desorbed respectively, a novel pathway with two C–O bonds broken simultaneously to generate CO2 was found. It results from a functional group of COO–char formed, and certain alternative pathways via C–C bonds breaking were also dealt with, as well as related CO desorptions. The reaction model built was validated by theoretical and experimental results from literature satisfactorily.
  • loading
  • [1]
    潘登. 新环保形势下焦炭市场发展趋势分析[J]. 煤炭经济研究,2019,39(8):15−19.

    PAN Deng. Analysis on the development trend of coke market under the new environmental protection situation[J]. Coal Econ Res,2019,39(8):15−19.
    [2]
    陈勇, 张俊晓, 杜仲军, 夏勇, 周研, 马凯. 延迟焦化装置焦炭自燃的原因及对策[J]. 山东化工,2019,48(21):123−124+126. doi: 10.3969/j.issn.1008-021X.2019.21.049

    CHEN Yong, ZHANG Jun-xiao, DU Zhong-jun, XIA Yong, ZHOU Yan, MA Kai. Causes and countermeasures of coke spontaneous combustion in delayed coking units[J]. Shandong Chem Ind,2019,48(21):123−124+126. doi: 10.3969/j.issn.1008-021X.2019.21.049
    [3]
    李金虎. 基于活性位点产生和氧化的热侵煤体煤自燃特性及抑制途径研究[D]. 徐州: 中国矿业大学, 2020.

    LI Jin-hu. Study on spontaneous combustion characteristics and inhibition pathway of thermal invaded coal based on the generation and oxidation of active sites[D]. Xuzhou: China University of Mining and Technology, Bei Jing, 2020.
    [4]
    ZHU Z H, LU G Q(Max), FINNERTY J, YANG R T. Electronic structure methods applied to gas-carbon reactions[J]. Carbon,2003,41(4):635−658. doi: 10.1016/S0008-6223(02)00380-9
    [5]
    MONTOYA A, MONDRAGON F, TRUONG T N. Formation of CO precursors during char gasification with O2, CO2 and H2O[J]. Fuel Process Technol,2002,77−78:125−130. doi: 10.1016/S0378-3820(02)00013-9
    [6]
    MONTOYA A, MONDRAGON F, TRUONG T N. CO2 adsorption on carbonaceous surfaces: a combined experimental and theoretical study[J]. Carbon,2003,41(1):29−39. doi: 10.1016/S0008-6223(02)00249-X
    [7]
    ESPINAL J F, MONTOYA A, MONDRAGON F, TRUONG T N. A DFT study of interaction of carbon monoxide with carbonaceous materials[J]. J Phys Chem B,2004,108(3):1003−1008. doi: 10.1021/jp0308211
    [8]
    BACKREEDY R, JONES J M, POURKASHANIAN M, WILLLAMS A. A study of the reaction of oxygen with graphite: Model chemistry[J]. Faraday Discuss,2002,119:385−394.
    [9]
    ZHUANG Q L, KYOTANI T, TOMITA A. Dynamics of surface oxygen complexes during carbon gasification with oxygen[J]. Energy Fuels,1995,9(4):630−634. doi: 10.1021/ef00052a009
    [10]
    SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst,2011,33(2):1851−1858. doi: 10.1016/j.proci.2010.06.021
    [11]
    SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the zigzag surface of graphite[J]. Combust Flame,2005,143:629−643. doi: 10.1016/j.combustflame.2005.08.026
    [12]
    RADOVIC L R. The mechanism of CO2 chemisorption on Zigzag carbon active sites: A computational chemistry study[J]. Carbon,2005,43(5):907−915. doi: 10.1016/j.carbon.2004.11.011
    [13]
    钟俊, 高正阳, 丁艺, 余岳溪, 杨维结. Zigzag煤焦表面异相还原N2O反应[J]. 煤炭学报,2017,42(11):3028−3034.

    ZHONG Jun, GAO Zheng-Yang, DING Y, YU Y X, YANG W J. Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model[J]. J China Coal Soc,2017,42(11):3028−3034.
    [14]
    CHEN Y F, SU S, ZHANG C X, WANG Z H, XIE Y X, ZHANG H, QING M X, WANG Y, HU S, ZHANG Z X, XIANG J. Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere[J]. Fuel,2021,302(10):121105.
    [15]
    YANG H P, DONG Z G, LIU B, CHEN Y Q, GONG M, LI S J, CHEN H P. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char[J]. Fuel,2020,288(11):119719.
    [16]
    FRANKCOMBE T J, SMITH S C. OH-initiated oxidation of toluene. 1. Quantum chemistry investigation of the reaction path[J]. J Phys Chem A,2007,111(19):3686−3690. doi: 10.1021/jp067112i
    [17]
    SIMONS J, NICHOLS J. Quantum mechanics in chemistry [M]. New York: Oxford University Press, 1997.
    [18]
    ZHANG H, LIU J X, WANG X Y, LUO L, JIANG X M. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel,2017,203:715−724. doi: 10.1016/j.fuel.2017.05.023
    [19]
    周赛, 刘虎, 于鹏飞, 车得福. 基于密度泛函理论的CO2对NO异相还原影响的机理研究[J]. 燃料化学学报,2021,49(9):1234−1238.

    ZHOU Sai, LIU Hu, YU Peng-fei, CHE De-fu. Study on the mechanism of oxidation of nitrogen–containing char by CO2 based on density functional theory[J]. J Fuel Chem Technol,2021,49(9):1234−1238.
    [20]
    ORREGO J F, ZAPATA F, TRUONG T N, MONDRAGON F. Heterogeneous CO2 evolution from oxidation of aromatic carbon-based materials[J]. J Phys Chem A,2009,113(29):8415−8420. doi: 10.1021/jp903362g
    [21]
    SÁNCHEZ A, MONDRAGON F. Role of the epoxy group in the heterogeneous CO2 evolution in carbon oxidation reactions[J]. J Phys Chem C,2007,111(2):612−617. doi: 10.1021/jp065701i
    [22]
    RAADOVIC L R. Active sites in graphene and the mechanism of CO2 formation in carbon oxidation[J]. J Am Chem Soc,2009,131(47):17166−17175. doi: 10.1021/ja904731q
    [23]
    HURT R H, CALO J M. Semi-global intrinsic kinetics for char combustion modeling[J]. Combust Flame,2001,125:1138−1149. doi: 10.1016/S0010-2180(01)00234-6
    [24]
    田向红. 焦炭氧化的密度泛函理论研究[D]. 郑州: 郑州大学, 2019.

    TIAN Xiang-hong. Density functional theory study of coke oxidation[D]. Zhengzhou: Zhengzhou University, 2019.
    [25]
    CREHUT R, BOFILL J M. The reaction path intrinsic reaction coordinate method and the Hamilton-Jacobi theory[J]. J Chem Phys,2005,122(23):234105. doi: 10.1063/1.1927521
    [26]
    CHUANG Y Y, CORCHADO J C, TRUHLAR D G. Mapped interpolation scheme for single-point energy corrections in reaction rate calculations and a critical evaluation of Dual-Level reaction path dynamics methods[J]. J Phys Chem A,1999,103(8):1140−1149. doi: 10.1021/jp9842493
    [27]
    刘国杰, 黑恩成. 化学反应活化能的定义及其与势垒的关系[J]. 大学化学,2013,28(5):73−76.

    LIU Guo-jie, HEI En-cheng. The definition of activation energy of chemical reaction and its relation with potential barrier[J]. Univ Chem,2013,28(5):73−76.
    [28]
    傅献彩, 沈文霞, 姚天扬. 物理化学(第四版)(下册)[M]. 北京: 高等教育出版社, 1990: 64−65

    FU Xian-cai, SHEN Wen-xia, YAO Tian-yang. Physical Chemistry [M]. 4th Ed. Beijing: Higher Education Press, 1990: 64−65.
    [29]
    ROBERTS M J, EVERSON R C, DOMAZETIS G, NEOMAGUS H W J P, JONES J M, VAN SITTERTE C G C E. OKOLO G N, NIEKERKF D V N, MATHEWS J P, The DFT molecular modeling and experimental particle kinetics studies of CO2-char gasification[J]. Carbon,2015,93:295−314. doi: 10.1016/j.carbon.2015.05.053
    [30]
    MA M C, BROWN T C, HAYNES B S. Evaluation of thermal desorption spectra for heterogeneous surfaces: Application to carbon surface oxides[J]. Surf Sci,1993,297(3):312−326. doi: 10.1016/0039-6028(93)90220-E
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (361) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return