Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
LI Yan, CHENG Qing-yan, LIU Dong-jie, YANG Shu-hui, HU Liang-yan, GU Yun-han, SHI Hua, QIAO Jin-dong. Electrocatalytic oxygen evolution of ultrafine nano-Co3O4 coupled with N-rich carbon composites[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 904-911. doi: 10.1016/S1872-5813(22)60003-3
Citation: LI Yan, CHENG Qing-yan, LIU Dong-jie, YANG Shu-hui, HU Liang-yan, GU Yun-han, SHI Hua, QIAO Jin-dong. Electrocatalytic oxygen evolution of ultrafine nano-Co3O4 coupled with N-rich carbon composites[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 904-911. doi: 10.1016/S1872-5813(22)60003-3

Electrocatalytic oxygen evolution of ultrafine nano-Co3O4 coupled with N-rich carbon composites

doi: 10.1016/S1872-5813(22)60003-3
Funds:  The project was supported by Natural Science Foundation of Hebei Province (B2018202293).
  • Received Date: 2021-12-17
  • Accepted Date: 2022-02-25
  • Rev Recd Date: 2022-02-13
  • Available Online: 2022-03-07
  • Publish Date: 2022-08-01
  • Transition metal oxide is a kind of catalyst with high catalytic activity for electrocatalytic oxygen evolution reaction. However, the catalytic activity is limited by the low electronic conductivity. The effective way to construct high performance electrode material or electrochemical catalyst is combining the nano material with conductive matrix material. The polymerized porphyrins supported on C3N4 were prepared by solvothermal method. The Co3O4/NC catalyst was prepared by Co modification and heat treatment of BDA-PY/C3N4. The physicochemical properties of the catalyst were characterized by XRD, SEM, TEM, XPS and FT-IR, and so on. The results indicate that Co3O4/NC-600 possesses a super-small nano-Co3O4 structure and high nitrogen content. The strong chemical bond between pyridinic N of the nitrogen-doped carbon and Co is formed, resulting in a synergistic effect, which makes the catalyst show good catalytic performance in OER reaction. Its Tafel slope is only 66.4 mV/dec and the minimum overpotential is 343.3 mV when the current density reaches 10 mA/cm2.
  • loading
  • [1]
    LI L G, WANG P T, SHAO Q, HUANG X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem Soc Rev,2020,49(10):3072−3106. doi: 10.1039/D0CS00013B
    [2]
    OENER S Z, FOSTER M J, BOETTCHER S W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science,2020,369(6507):1099−1103. doi: 10.1126/science.aaz1487
    [3]
    ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem Soc Rev,2015,44(15):5148−5180. doi: 10.1039/C4CS00448E
    [4]
    LI X, ZHAO L L, YU J Y, LIU X Y, ZHANG X L, LIU H, ZHOU W J. Water splitting: from electrode to green energy system[J]. Nano-Micro Lett,2020,12(1):131. doi: 10.1007/s40820-020-00469-3
    [5]
    LING T, ZHANG T, GE B H, HAN L L, ZHENG L R, LUN F, XU Z R, HU W B, DU X W, DAVEY K, QIAO S Z. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction[J]. Adv Mater,2019,31(16):e1807771. doi: 10.1002/adma.201807771
    [6]
    ZHANG H, YANG X H, ZHANG H J, MA J L, HUANG Z Y, LI J, WANG Y. Recent advances in transition-metal carbides as HER electrocatalysts: Synthetic methods and optimization strategies[J]. Chem,2021,27(16):5074−5090. doi: 10.1002/chem.202003979
    [7]
    LI Y, LI H X, CAO K Z, JIN T, WANG X J, SUN H M, NING J X, WANG Y J, JIAO L F. Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution[J]. Energy Stor Mater,2018,12:44−53. doi: 10.1016/j.ensm.2017.11.006
    [8]
    WANG J, XU F, JIN H Y, CHEN Y Q, WANG Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Adv Mater,2017,29(14):1605838. doi: 10.1002/adma.201605838
    [9]
    LIU J H, LIU X W. Two-dimensional nanoarchitectures for lithium storage[J]. Adv Mater,2012,24(30):4097−4111. doi: 10.1002/adma.201104993
    [10]
    YU M Z, ZHOU S, WANG Z Y, ZHAO J J, QIU J S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181−190. doi: 10.1016/j.nanoen.2017.12.003
    [11]
    XIE L S, ZHANG X P, ZHAO B, LI P, QI J, GUO X A, WANG B, LEI H T, ZHANG W, APFEL U, CAO R. Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions[J]. Angew Chem Int Ed Eng,2021,60(14):7576−7581. doi: 10.1002/anie.202015478
    [12]
    ZHANG X P, CHANDRA A, LEE Y M, CAO R, RAY K, NAM W. Transition metal-mediated O-O bond formation and activation in chemistry and biology[J]. Chem Soc Rev,2021,50(8):4804−4811. doi: 10.1039/D0CS01456G
    [13]
    LV B, LI X L, GUO K, MA J, WANG Y Z, LEI H T, WANG F, JIN X T, ZHANG Q X, ZHANG W, LONG R, XIONG Y J, APFEL U, CAO R. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angew Chem Int Ed Eng,2021,60(23):12742−12746. doi: 10.1002/anie.202102523
    [14]
    ZHANG B X, ZHANG J L, SHI J B, TAN D X, LIU L F, ZHANG F Y, LU C, SU Z Z, TAN X N, CHENG X Y, HAN B X, ZHENG L R, ZHANG J. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction[J]. Nat Commun,2019,10(1):1−8. doi: 10.1038/s41467-018-07882-8
    [15]
    ZHU J, HU L S, ZHAO P X, LEE L Y S, WONG K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem Rev,2020,120(2):851−918. doi: 10.1021/acs.chemrev.9b00248
    [16]
    HAN H, PAIK J W, HAM M, KIM K M, PARK J K, JEONG Y K. Atomic layer deposition-assisted fabrication of Co-nanoparticle/N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction[J]. Small,2020,16(33):e2002427. doi: 10.1002/smll.202002427
    [17]
    WANG H, SHAO Y, MEI S L, LU Y, ZHANG M, SUN J, MATYJASZEWSKI K, ANTONIETTI M, YUAN J Y. Polymer-derived heteroatom-doped porous carbon materials[J]. Chem Rev,2020,120(17):9363−9419. doi: 10.1021/acs.chemrev.0c00080
    [18]
    ZANG W J, SUN T, YANG T, XI S B, WAQAR M, KOU Z K, LYU Z, FENG Y P, WANG J, PENNYCOOK S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis[J]. Adv Mater,2021,33(8):e2003846. doi: 10.1002/adma.202003846
    [19]
    YANG C H, YANG Z D, DONG H, SUN N, LU Y, ZHANG F M, ZHANG G L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER[J]. ACS Energy Lett,2019,4(9):2251−2258. doi: 10.1021/acsenergylett.9b01691
    [20]
    ZHANG X, ZHU Y, BRUCK A M, HOUSEL L M, WANG L, QUILTY C D, TAKEUCHI K J, TAKEUCHI E S, MARSCHILOK A C, YU G H. Understanding aggregation hindered Li-ion transport in transition metal oxide at mesoscale[J]. Energy Stor Mater,2019,19:439−445. doi: 10.1016/j.ensm.2019.03.017
    [21]
    LU M, LIU J, LI Q, ZHANG M, LIU M, WANG J L, YUAN D Q, LAN Y Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O[J]. Angew Chem Int Ed Eng,2019,58(36):12392−12397. doi: 10.1002/anie.201906890
    [22]
    吴文倩, 邓德明. 铁掺杂氮化碳的制备及其可见光催化性能[J]. 武汉大学学报(理学版),2017,63(3):227−233.

    WU Wen-qian, DENG De-ming. Fabrication of Fe-doped carbon nitride with enhanced visible light photocatalytic performance[J]. J Wuhan Univ (Nat Sci Ed),2017,63(3):227−233.
    [23]
    AN S F, ZHANG G H, LIU J Q, LI K Y, WAN G, LIANG Y, JI D H, MILLER J T, SONG C S, LIU W, LIU Z M, GUO X W. A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites[J]. Chin J Catal,2020,41(8):1198−1207. doi: 10.1016/S1872-2067(20)63529-X
    [24]
    石明亮. Co3O4/g-C3N4/Pt复合材料的制备及其光催化制氧研究[D]. 太原: 中北大学, 2019.

    SHI Ming-liang. Preparation and photocatalytic oxygen production of Co3O4/g-C3N4/Pt composites[D]. Taiyuan: North University of China, 2019.
    [25]
    LIU X S, XU H M, WANG L L, QU Z, YAN N Q. Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry[J]. Chem Eng J,2020,381:122559. doi: 10.1016/j.cej.2019.122559
    [26]
    LI P Y, LIU L, AN W J, WANG H, GUO H X, LIANG Y H, CUI W Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO to ethanol[J]. Appl Catal B: Environ,2020,266:118618. doi: 10.1016/j.apcatb.2020.118618
    [27]
    HE D, SONG X Y, LI W Q, TANG C Y, LIU J C. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance[J]. Angew Chem Int Ed Eng,2020,59(17):6929−6935. doi: 10.1002/anie.202001681
    [28]
    WANG X R, LIU J Y, LIU Z W, WANG W C, LUO J, HAN X P, DU X W, QIAO S Z, YANG J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER[J]. Adv Mater,2018,30(23):1800005. doi: 10.1002/adma.201800005
    [29]
    宋卓卓, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 史春薇, 杨占旭. CoSOH/Co(OH)2 复合纳米片的制备及其氧析出催化性能[J]. 燃料化学学报,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4

    SONG Zhuo-zhuo, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, SHI Chun-wei, YANG Zhan-xu. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. J Fuel Chem Technol,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4
    [30]
    CHEN J S, LI H, CHEN S M, FEI J Y, LIU C, YU Z X, SHIN K, LIU Z W, SONG L, HENKELMAN G, WEI L, CHEN Y. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts[J]. Adv Energy Mater,2021,11(11):2003412. doi: 10.1002/aenm.202003412
    [31]
    WU P W, WU J, SI H N, ZHANG Z, LIAO Q L, WANG X, DAI F L, AMMARAH K, KANG Z, ZHANG Y. 3D holey-graphene architecture expedites ion transport kinetics to push the OER performance[J]. Adv Energy Mater,2020,10(22):2001005. doi: 10.1002/aenm.202001005
    [32]
    WAN C Z, DUAN X F, HUANG Y. Molecular design of single-atom catalysts for oxygen reduction reaction[J]. Adv Energy Mater,2020,10(14):1903815. doi: 10.1002/aenm.201903815
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2616) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return