Volume 50 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
WEI Bing, CHEN Qian, WANG Wei-cheng, ZHANG Wan-xiang, TAO Rui-min, DOU Yi-fan, WANG Xing-jun. Migration behavior of potassium under condition of steam gasification of Yulin coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 927-936. doi: 10.1016/S1872-5813(22)60005-7
Citation: WEI Bing, CHEN Qian, WANG Wei-cheng, ZHANG Wan-xiang, TAO Rui-min, DOU Yi-fan, WANG Xing-jun. Migration behavior of potassium under condition of steam gasification of Yulin coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 927-936. doi: 10.1016/S1872-5813(22)60005-7

Migration behavior of potassium under condition of steam gasification of Yulin coal

doi: 10.1016/S1872-5813(22)60005-7
Funds:  The project was supported by the National Natural Science Foundation of China (U21A20319)
More Information
  • Corresponding author: Tel: 021- 64250192, Email: wxj@ecust.edu.cn
  • Received Date: 2021-12-31
  • Accepted Date: 2022-02-28
  • Rev Recd Date: 2022-02-23
  • Available Online: 2022-03-08
  • Publish Date: 2022-08-26
  • A fixed bed reactor and atomic absorption spectroscopy were used to investigate potassium recovery efficiency of Yulin coal loaded with potassium carbonate (ZA-K), Yulin demineralized coal loaded with potassium carbonate (ZA-THK) and synthetic ash (Configurations of four oxides: SiO2, Al2O3, CaO, Fe2O3) loaded with potassium carbonate after reaction. Fourier infrared spectroscopy and Raman spectroscopy were used to study influence of structural evolution of ZA-K and ZA-THK on migration of potassium during pyrolysis. The results show that the yield of water-soluble potassium decreases with increasing temperature. Three times water washing could recover 94.06%−98.80% of the total water-soluble potassium. Formation of insoluble potassium is due to the phase of potassium aluminosilicate formed by potassium, silicon and aluminum in the coal ash. Potassium is easier to volatilize from ZA-THK than that from ZA-K. At 700−850 ℃ potassium in ZA-THK is volatilized 10.28%−44.92% higher than that of ZA-K, resulting from that the ash in ZA-K would fix the loaded potassium in coal ash. Another reason may be caused by decrease in the degree of aromatic polymerization of ZA-THK through demineralization process, leading to more small-ring aromatic structures (2−8 rings) appearing in the coal.
  • loading
  • [1]
    武恒, 李克忠, 吴松怡, 赵锐君, 刘雷, 王会芳. 钾钠复合催化剂对煤气化反应的影响[J]. 现代化工,2020,40(11):109−112.

    WU Heng, LI Ke-zhong, WU Song-yi, ZHAO Rui-jun, LIU Lei, WANG Hui-fang. Effect of K2CO3-Na2CO3 compound catalyst on coal gasification[J]. Mod Chem Ind,2020,40(11):109−112.
    [2]
    LI W, YU Z, GUAN G. Catalytic coal gasification for methane production: A Review[J]. Carbon Res Convers,2021,4:89−99. doi: 10.1016/j.crcon.2021.02.001
    [3]
    ARNOLD R A, HILL J M. Catalysts for gasification: A review[J]. Sustainable Energy Fuels,2019,3:656−672. doi: 10.1039/C8SE00614H
    [4]
    WANG J, JIANG M, YAO Y, ZHANG Y, CAO J. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel,2009,88(9):1572−1579.
    [5]
    YUAN X Z, NAMKUNG H, KANG T, KIM H. K2CO3-catalyzed steam gasification of Indonesian low-rank coal for H2-rich gas production in a fixed bed reactor[J]. Energy Technol,2015,3(5):527−534. doi: 10.1002/ente.201402198
    [6]
    ARASH K, MURRAY R G. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel,2011,90(1):120−125. doi: 10.1016/j.fuel.2010.07.032
    [7]
    CHEN S G, YANG R T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O[J]. Energy Fuels,1997,11(2):421−427. doi: 10.1021/ef960099o
    [8]
    WIGMANS T, GOEBEL J C, MOULIJN J A. The influence of pretreatment conditions on the activity and stability of sodium and potassium catalysts in carbon-steam reactions[J]. Carbon,1983,21(3):295−301. doi: 10.1016/0008-6223(83)90094-5
    [9]
    SHADMAN F, SAMS D A, PUNJAK W A. Significance of the reduction of alkali carbonates in catalytic carbon gasification[J]. Fuel,1987,66(12):58−63.
    [10]
    SABER J M, KESTER K B, FALCONER J L, BROWN L F. A mechanism for sodium oxide catalyzed CO2 gasification of carbon[J]. J Catal,1988,109(2):329−346. doi: 10.1016/0021-9517(88)90216-3
    [11]
    KOPYSCINSKI J, RAHMAN M, GUPTA R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel,2014,117(1):1181−1189.
    [12]
    HUHN F, KLEIN J, JUNTGEN H. Investigations on the alkali-catalysed steam gasification of coal: Kinetics and interactions of alkali catalyst with carbon[J]. Fuel,1983,62(2):196−199. doi: 10.1016/0016-2361(83)90197-7
    [13]
    FENG D, ZHAO Y, ZHANG Y, XU H H, ZHANG L Y, SUN S Z. Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification[J]. Fuel,2018,212(15):523−532.
    [14]
    LU T, MAO Y, WANG H, LIU L, LI K. Effect of pre-treatment on catalytic coal gasification characteristics of sub-bituminous coal[J]. J Energy Inst,2021,96:173−180. doi: 10.1016/j.joei.2021.03.013
    [15]
    陈杰, 陈凡敏, 王兴军, 于广锁, 王辅臣. 煤催化气化过程中钾催化剂回收的实验研究[J]. 化学工程,2012,40(6):68−71. doi: 10.3969/j.issn.1005-9954.2012.06.017

    CHEN Jie, CHEN Fan-min, WANG Xing-jun, YU Guang-suo, WANG Fu-chen. Experimental study on potassium catalyst recovery in coal catalytic gasification[J]. Chem Eng,2012,40(6):68−71. doi: 10.3969/j.issn.1005-9954.2012.06.017
    [16]
    YUAN X, FAN S, CHOI S W, KIM H T, LEE K B. Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system[J]. Appl Energy,2017,195(1):850−860.
    [17]
    梅艳钢, 王志青, 高松平, 郑洪岩, 张郃, 房倚天. 碱金属与碱土金属在煤炭热转化过程中的影响研究进展[J]. 燃料化学学报,2020,48(4):386−393.

    MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHANG He, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. J Fuel Chem Technol,2020,48(4):386−393.
    [18]
    LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(10/11): 1700−1707.
    [19]
    YE C P, YANG Z J, LI W Y, RONG H L, FENG J. Effect of adjusting coal properties on HulunBuir lignite pyrolysis[J]. Fuel Process Technol,2017,156:415−20. doi: 10.1016/j.fuproc.2016.10.002
    [20]
    XIE X, LIU L, LIN D, QIU P. Influence of different state alkali and alkaline earth metal on chemical structure of Zhundong coal char pyrolyzed at elevated pressures[J]. Fuel,2019,254:1−11.
    [21]
    XIE X, ZHAO Y, QIU P H, LIN D, QIAN J, HOU H M, PEI J. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks[J]. Fuel,2018,216(15):521−530.
    [22]
    XUE Q H, LIU X F, NIE B S, SONG D Z. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206(15):555−563.
    [23]
    江国栋. 低阶煤热解反应动力学实验与模型研究[D]. 西安: 西北大学, 2019.

    JIANG Guo-dong. Experimental and model research on pyrolysis reaction kinetics of low-rank coal[D]. Xi'an: Northwest University, 2019.
    [24]
    王瀚姣, 杜美利, 薛文海, 刘忠诚. 酸洗对黄陵富油煤结构和动力学特征的影响[J]. 煤炭转化,2021,44(4):38−42.

    WANG Han-jiao, DU Mei-li, XUE Wen-hai, LIU Zhong-cheng. Effects of pickling on structure and Kinetic characteristic of Huangling oil-rich coal[J]. Coal Convers,2021,44(4):38−42.
    [25]
    毛燕东. 煤催化气化过程中矿物质变迁规律及结渣机理研究[D]. 天津: 天津大学, 2017.

    MAO Yan-dong. Minerals transformation and slagging mechanism of coal ash in catalytic coal gasification process[D]. Tianjin: Tianjin University, 2017.
    [26]
    VARGAS S, FRANDSEN F J, DAM J K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust Sci,2001,27(3):237−429. doi: 10.1016/S0360-1285(00)00023-X
    [27]
    王恩德, 付建飞, 王丹丽. 结晶学与矿物学实验教程[M]. 北京: 地质出版社, 2014.

    WANG En-de, FU Jian-fei, WANG Dan-li. Experimental Course of Crystallography and Mineralogy[M]. Beijing: Geological Publishing House, 2014.
    [28]
    FERRARI AC, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61(20):14095−14107. doi: 10.1103/PhysRevB.61.14095
    [29]
    LI X, HAYASHI J, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel,2006,85(10-11):1509−1517. doi: 10.1016/j.fuel.2006.01.011
    [30]
    ZHANG J, ZHANG R, BI J. Effect of catalyst on coal char structure and its role in catalytic coal gasification[J]. Catal Commun,2016,79(5):1−5.
    [31]
    UMEMOTO S, KAJITANI S, HARA S. Modeling of coal char gasification in coexistence of CO2 and H2O considering sharing of active sites[J]. Fuel,2013,103:14−21. doi: 10.1016/j.fuel.2011.11.030
    [32]
    CHEN S G, YANG R T. Mechanism of alkali and alkaline earth catalyzed gasification of graphite by CO2 and H2O studied by electron microscopy[J]. J Catal,1992,138(1):12−23. doi: 10.1016/0021-9517(92)90003-Z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (541) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return