Volume 50 Issue 7
Aug.  2022
Turn off MathJax
Article Contents
QIAO Pei, GUO Zi-qian, ZHANG Yu-ming, LI Jia-zhou, ZHANG Wei, LIU Ming-hua. Comparative study on pyrolysis kinetics of agroforestry biomass based on distributed activation energy model method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 808-823. doi: 10.1016/S1872-5813(22)60009-4
Citation: QIAO Pei, GUO Zi-qian, ZHANG Yu-ming, LI Jia-zhou, ZHANG Wei, LIU Ming-hua. Comparative study on pyrolysis kinetics of agroforestry biomass based on distributed activation energy model method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 808-823. doi: 10.1016/S1872-5813(22)60009-4

Comparative study on pyrolysis kinetics of agroforestry biomass based on distributed activation energy model method

doi: 10.1016/S1872-5813(22)60009-4
Funds:  The project was supported by the National Key R&D Program of China (2018YFE0183600), National Natural Science Foundation (U1862107) and Science Foundation of China University of Petroleum, Beijing (2462020YXZZ043, 2462021QNXZ007).
  • Received Date: 2022-02-04
  • Accepted Date: 2022-03-23
  • Rev Recd Date: 2022-03-13
  • Available Online: 2022-04-06
  • Publish Date: 2022-07-10
  • Pyrolysis behavior and kinetics of three typical agroforestry biomasses including apricot shell, wheat straw and poplar sawdust were investigated by thermogravimetric mass spectrometry (TG-MS). The results show that the differences of the main components make the three biomasses exhibit different characteristics in the main reaction range (200–450 ℃). It is found that the average activation energy of apricot shell, straw and sawdust is 188.22, 220.77, and 175.87 kJ/mol, respectively based on the typical isoconversional methods. The average activation energy of each component in biomass was calculated by the distributed activation energy model (DAEM) method, indicating that there is a fourth component with high average activation energy in biomass (297.44 kJ/mol for apricot shell, 284.35 kJ/mol for straw and 309.96 kJ/mol for sawdust). The activation energy of hemicellulose and cellulose shows an increasing order of straw < apricot shell < sawdust. The two kinds of kinetics methods are complementary to each other. The overall calculation results by the isoconversional method are close to those by the single-component distributed activation energy model method, but the isoconversional method is simpler; while the distributed activation energy model method can be used to obtain the kinetic parameters of different components of raw materials, which makes up for the deficiency of the isoconversional method. A combined use of the two methods can form a more comprehensive understanding of the pyrolysis reaction.
  • loading
  • [1]
    YU J, GUO Q, GONG Y, DING L, WANG J, YU G. A review of the effects of alkali and alkaline earth metal species on biomass gasification[J]. Fuel Process Technol,2021,214:106723. doi: 10.1016/j.fuproc.2021.106723
    [2]
    BRITISH PETROLEUM. Statistical Review of World Energy[M]. UK: Pureprint Group, 2021.
    [3]
    付朋霞, 孟亚洁. 我国实现"双碳"目标面临的机遇与挑战[J]. 通信世界,2021,16:22−23. doi: 10.3969/j.issn.1009-1564.2021.07.010

    FU Peng-xia, MENG Ya-jie. Opportunities and challenges faced by China to achieve the goal of “Double Carbon”[J]. Communi World,2021,16:22−23. doi: 10.3969/j.issn.1009-1564.2021.07.010
    [4]
    SOLARTE-TORO J C, GONZÁLEZ-AGUIRRE J A, GIRALDO J A P, ALZATE C A C. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading[J]. Renewable Sustainable Energy Rev,2021,136:110376. doi: 10.1016/j.rser.2020.110376
    [5]
    MENG X, GE H, YE Q, PENG L, WANG Z, JIANG L. Efficient and response surface optimized aqueous enzymatic extraction of Camellia oleifera (tea seed) oil facilitated by concurrent calcium chloride addition[J]. J Am Oil Chem Soc,2018,95(1):29−37. doi: 10.1002/aocs.12009
    [6]
    SRAMALA I, PINKET W, PONGWAN P, JARUSSOPHON S, KASEMWONG K. Development of an in vitro system to simulate the adsorption of self-emulsifying tea (Camellia oleifera) seed oil[J]. Molecules,2016,21(5):479. doi: 10.3390/molecules21050479
    [7]
    YAO Z, YOU S, GE T, WANG C. Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation[J]. Appl Energ,2018,209:43−55. doi: 10.1016/j.apenergy.2017.10.077
    [8]
    LI D, JIANG H. The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation[J]. Bioresour Technol,2017,246:57−68. doi: 10.1016/j.biortech.2017.07.029
    [9]
    CAI J, XU D, DONG Z, YU X, WANG Y, BANKS S W, BRIGEWATER A V. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk[J]. Renewable Sustainable Energy Rev,2018,82:2705−2715. doi: 10.1016/j.rser.2017.09.113
    [10]
    LUO L, LIU J, ZHANG H, MA J, WANG X, JIANG X. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal[J]. J Anal Appl Pyrolysis,2017,128:64−74. doi: 10.1016/j.jaap.2017.10.024
    [11]
    HUANG J, LIN J, CHEN J, XIE W, KUO J, LU X, CHANG K, WEN S, SUN G, CAI H, BUYUKADA M, EVRENDILEK F. Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: thermal conversion, kinetic, thermodynamic and emission analyses[J]. Bioresour Technol,2018,266:389−397. doi: 10.1016/j.biortech.2018.06.106
    [12]
    WANG S, DAI G, YANG H, LUO Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust Sci,2017,62:33−86.
    [13]
    EL-SAYED S A, MOSTAFA M E. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG)[J]. Energy Convers Manage,2014,85:165−172. doi: 10.1016/j.enconman.2014.05.068
    [14]
    SANCHEZ-SILVA L, LÓPEZ-GONZÁLEZ D, VILLASEÑOR J, SANCHEZ P, VALVERDE J L. Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis[J]. Bioresour Technol,2012,109:163−172. doi: 10.1016/j.biortech.2012.01.001
    [15]
    JANKOVIĆ B, MANIĆ N, STOJILJKOVIĆ D, JANKOVIĆ V. TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches[J]. Fuel,2018,234:447−463. doi: 10.1016/j.fuel.2018.07.051
    [16]
    ROQUE-DIAZ P, VILLAS L, SHEMET C V Z, LAVRENKE V A, KHRISTICH V A. Studies on thermal decomposition and combustion mechanism of bagasse under non-isothermal conditions[J]. Thermochim Acta,1985,93:349−352. doi: 10.1016/0040-6031(85)85088-7
    [17]
    BIAGINI E, BARONTINI F, TOGNOTTI L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique[J]. Ind Eng Chem Res,2006,45(13):4486−4493. doi: 10.1021/ie0514049
    [18]
    MÉSZÁROS E, JAKAB E, VÁRHEGYI G. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia[J]. J Anal Appl Pyrolysis,2007,79(1/2):61−70. doi: 10.1016/j.jaap.2006.12.007
    [19]
    VYAZOVKIN S, WIGHT C A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochim Acta,1999,340:53−68.
    [20]
    BURNHAM A K, DINH L N. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. J Therm Anal Calorim,2007,89(2):479−490. doi: 10.1007/s10973-006-8486-1
    [21]
    LAH B, KLINAR D, LIKOZAR B. Pyrolysis of natural, butadiene, styrene-butadiene rubber and tyre components: Modelling kinetics and transport phenomena at different heating rates and formulations[J]. Chem Eng Sci,2013,87:1−13. doi: 10.1016/j.ces.2012.10.003
    [22]
    ABOULKAS A, EL HARFI K, EL BOUADILI A. Non-isothermal kinetic studies on co-processing of olive residue and polypropylene[J]. Energ Convers Manage,2008,49(12):3666−3671. doi: 10.1016/j.enconman.2008.06.029
    [23]
    FREIDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[C]//Journal of polymer science part C: polymer symposia. New York: Wiley Subscription Services, Inc. , A Wiley Company, 1964, 6(1): 183-195.
    [24]
    CAI J, WU W, LIU R. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[J]. Renewable Sustainable Energy Rev,2014,36:236−246. doi: 10.1016/j.rser.2014.04.052
    [25]
    SORIA-VERDUGO A, MORGANO M T, MATZING H, GOOS E, LEIBOLD H, MERZ D, RIEDEL U, STAPF D. Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods[J]. Energy Convers Manage,2020,212:112818. doi: 10.1016/j.enconman.2020.112818
    [26]
    VYAZOVKIN S, BURNHAM A K, FAVERGEON L, KOGA N, MOUKHINA E, PEREZ-MAQUEDA L A, SBIRRAZZUOLI N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics[J]. Thermochim Acta,2020,689:178597. doi: 10.1016/j.tca.2020.178597
    [27]
    YACOB T W, FISHER R, LINDEN K G, WEIMER A W. Pyrolysis of human feces: Gas yield analysis and kinetic modeling[J]. Waste Manage,2018,79:214−222. doi: 10.1016/j.wasman.2018.07.020
    [28]
    WINTOKO J, PURWONO S, FAHRURRIZI M, SOEHENDRO B. Kinetic analysis for the drying and devolatilization stages of concentrated black liquor[C]//AIP Conference Proceedings. AIP Publishing LLC, 2019, 2085(1): 020066.
    [29]
    VÁRHEGYI G, CHEN H, GOGOY S. Thermal decomposition of wheat, oat, barley, and Brassica carinata straws. A kinetic study[J]. Energy Fuels,2009,23(2):646−652. doi: 10.1021/ef800868k
    [30]
    SINGH S, CHAKRABORTY J P, MONDAL M K. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods[J]. Fuel,2020,259:116263. doi: 10.1016/j.fuel.2019.116263
    [31]
    MISHRA R K, MOHANTY K, WANG X. Pyrolysis kinetic behavior and Py-GC-MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals[J]. Fuel,2020,260:116338. doi: 10.1016/j.fuel.2019.116338
    [32]
    XAVIER T P, LIRA T S, SCHETTINO M A, BARROZO M A S. A study of pyrolysis of macadamia nut shell: Parametric sensitivity analysis of the IPR model[J]. Braz J Chem Eng,2016,33:115−122. doi: 10.1590/0104-6632.20160331s00003629
    [33]
    李华, 孔新刚, 王俊. 秸秆饲料中纤维素、半纤维素和木质素的定量分析研究[J]. 新疆农业大学学报,2007,30(3):65−68. doi: 10.3969/j.issn.1007-8614.2007.03.015

    LI Hua, KONG Xin-gang, WANG Jun. Quantitative analysis of cellulose, hemicellulose and lignin in straw feed[J]. Xinjiang Agric Univ,2007,30(3):65−68. doi: 10.3969/j.issn.1007-8614.2007.03.015
    [34]
    HEAL G R. Evaluation of the integral of the Arrhenius function by a series of Chebyshev polynomials—use in the analysis of non-isothermal kinetics[J]. Thermochim Acta,1999,340:69−76.
    [35]
    宋春财, 胡浩权, 朱盛维, 朱英华. 生物质秸秆热重分析及几种动力学模型结果比较[J]. 燃料化学学报,2003,31(4):311−316. doi: 10.3969/j.issn.0253-2409.2003.04.005

    SONG Chun-cai, HU Hao-quan, ZHU Sheng-wei, ZHU Ying-hua. Thermogravimetric analysis of biomass straw and comparison of several kinetic models[J]. J Fuel Chem Technol,2003,31(4):311−316. doi: 10.3969/j.issn.0253-2409.2003.04.005
    [36]
    TIAN Y, PERRÉ P. Multiple-distribution DAEM modelling of spruce pyrolysis: An investigation of the best trade-off regarding the number and shape of distributions[J]. Energy Convers Manage,2021,229(2):113756.
    [37]
    CAI J, WU W, LIU R. A distributed activation energy model for the pyrolysis of lignocellulosic biomass[J]. Green Chem,2013,15(5):1331−1340. doi: 10.1039/c3gc36958g
    [38]
    OZAWA T. A new method of analyzing thermogravimetric data[J]. Bull Chem Soc Jpn,1965,38(11):1881−1886. doi: 10.1246/bcsj.38.1881
    [39]
    FLYNN J H, WALL L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Polym Sci B: Polym Lett,1966,4(5):323−328. doi: 10.1002/pol.1966.110040504
    [40]
    CAI J, JI L. Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass[J]. J Math Chem,2007,42(3):547−553. doi: 10.1007/s10910-006-9130-9
    [41]
    杨海平, 陈汉平, 杜胜磊, 陈应泉, 王贤华, 张世红. 碱金属盐对生物质三组分热解的影响[J]. 中国电机工程学报,2009,17:70−75. doi: 10.3321/j.issn:0258-8013.2009.11.012

    YANG Hai-ping, CHEN Han-ping, DU Sheng-lei, CHEN Ying-quan, WANG Xian-hua, ZHANG Shi-hong. Influence of alkali salts on the pyrolysis of biomass three components[J]. CSEE JPES,2009,17:70−75. doi: 10.3321/j.issn:0258-8013.2009.11.012
    [42]
    MIURA K, MAKI T. A simple method for estimating f (E) and k 0 (E) in the distributed activation energy model[J]. Energy Fuels,1998,12(5):864−869. doi: 10.1021/ef970212q
    [43]
    邢献军, 杨静, 范方宇, 李永玲, 张贤文. 木屑及其水热炭的热解特性和动力学对比[J]. 农业工程学报,2017,33(4):258−264.

    XING Xian-jun, YANG Jing, FAN Fang-yu, LI Yong-ling, ZHANG Xian-wen. Comparison of pyrolysis characteristics and kinetics of sawdust and its hydrothermal carbon[J]. Trans CSAE,2017,33(4):258−264.
    [44]
    MA Z, CHEN D, GU J, BAO B, ZHANG Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Convers Manag,2015,89:251−259. doi: 10.1016/j.enconman.2014.09.074
    [45]
    VAMVUKA D, KAKARAS E, KASTANAKI E, GRAMMELIS P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite[J]. Fuel,2003,82(15/17):1949−1960. doi: 10.1016/S0016-2361(03)00153-4
    [46]
    TIBOLA F L, DE OLIVEIRA T J P, CERQUEIRA D A, ATAÍDE C H, CARDOSO C R. Kinetic parameters study for the slow pyrolysis of coffee residues based on thermogravimetric analysis[J]. Quim Nova,2020,43:426−434.
    [47]
    SORIA-VERDUGO A, GOOS E, GARCÍA-HERNANDO N, RIEDEL U. Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the distributed activation energy model[J]. Algal Res,2018,32:11−29. doi: 10.1016/j.algal.2018.03.005
    [48]
    GUO X, CAI J, YU X. Kinetics and thermodynamics of microalgae residue oxidative pyrolysis based on double distributed activation energy model with simulated annealing method[J]. Anal Appl Pyrolysis,2021,154:104997. doi: 10.1016/j.jaap.2020.104997
    [49]
    MARTINEZ A, MERIÑO L, ALBIS A, ORTEGA J. Comparative study of the reaction kinetics of three residual biomasses[J]. Bioresour, 2021, 16(2): 2891−2905.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (536) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return