Volume 50 Issue 9
Oct.  2022
Turn off MathJax
Article Contents
MU Lin, ZHANG Bin, ZHANG Hu, WU Di, ZHAO Liang, YIN Hong-chao, DONG Ming. Simulation study on modification of reaction performance for ferrite oxygen carrier based on doping with K3FeO4[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1147-1154. doi: 10.1016/S1872-5813(22)60012-4
Citation: MU Lin, ZHANG Bin, ZHANG Hu, WU Di, ZHAO Liang, YIN Hong-chao, DONG Ming. Simulation study on modification of reaction performance for ferrite oxygen carrier based on doping with K3FeO4[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1147-1154. doi: 10.1016/S1872-5813(22)60012-4

Simulation study on modification of reaction performance for ferrite oxygen carrier based on doping with K3FeO4

doi: 10.1016/S1872-5813(22)60012-4
Funds:  The project was supported by the National Natural Science Foundation of China (52176179)
More Information
  • Corresponding author: Tel:13889636419, E-mail:l.mu@dlut.edu.cn
  • Received Date: 2022-02-18
  • Rev Recd Date: 2022-03-23
  • Available Online: 2022-04-15
  • Publish Date: 2022-10-21
  • Developing the oxygen carriers with large oxygen carrying capacity, high reactivity, and strong cycle stability is one of the research focuses in the chemical looping combustion technology. In this study, the effect of spinel-structured K3FeO4 on the reactivity of Fe-based oxygen carrier was investigated based on the density functional theory involving the electronic structural properties such as the density of states, adsorption energy, and activation energy. The results show that when the K3FeO4 is loaded on the α-Fe2O3(001) surface, the microscopic electronic structure of α-Fe2O3(001) surface is changed, the Fe–O bond on the surface is elongated, the O-p orbital electrons transition to a higher energy level, and the electron activity of oxygen atom is improved. The energy barriers of CO reaction with the surface lattice oxygen show a decreasing trend at the three lattice oxygen sites after the loading of K3FeO4 which can improve the activity of surface oxygen atoms and make the breakage of Fe–O bond via elongation easier with less energy required. In addition, CO can bond with the more active oxygen atom in K3FeO4, and also can combine with the O2 atom to form a new C–O bond, by which CO is adsorbed on the surface in the form of bidentate carbonate that can be decomposed and released as CO2.
  • loading
  • [1]
    HONG H, JIN H. A novel solar thermal cycle with chemical looping combustion[J]. Int J Green Energy,2005,2(4):397−407. doi: 10.1080/01971520500288022
    [2]
    ZHAO H, TIAN X, MA J, CHEN X, SU M, ZHENG C, WANG Y. Chemical looping combustion of coal in China: Comprehensive progress, remaining challenges, and potential opportunities[J]. Energy Fuels,2020,34(6):6696−6734. doi: 10.1021/acs.energyfuels.0c00989
    [3]
    梁志永, 董长青, 覃吴, 林常枫. 化学链燃烧中铁基载氧体性能优化研究综述[J]. 现代化工,2017,37(2):36−40.

    LIANG Zhi-yong, DONG Chang-qing, QIN Wu, LIN Chang-feng. Review on optimization of iron based oxygen carriers in chemical-looping combustion[J]. Mod Chem Ind,2017,37(2):36−40.
    [4]
    ZHANG Y, DOROODCHI E, MOGHTADERI B. Reduction kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion [J]. Energy Fuels, 2015, 29(1): 337–345.
    [5]
    GE H, SHEN L, GU H, JIANG S. Effect of co-precipitation and impregnation on K-decorated Fe2O3/Al2O3 oxygen carrier in chemical looping combustion of bituminous coal[J]. Chem Eng J,2015,262:1065−1076. doi: 10.1016/j.cej.2014.10.021
    [6]
    沈来宏, 周玉飞, 顾海明, 牛欣, 葛晖骏, 肖军. 基于草木灰修饰Fe基载氧体的化学链燃烧实验[J]. 热科学与技术,2015,14(4):305−313.

    SHEN Lai-hong, ZHOU Yu-fei, GU Hai-ming, NIU Xin, GE Hui-jun, XIAO Jun. Experimental investigation of chemical looping combustion of Fe-based oxygen carrier modified by plant ash[J]. J Therm Sci Technol,2015,14(4):305−313.
    [7]
    张思文, 沈来宏, 肖军, 顾海明, 宋涛. 基于碱金属和过渡金属修饰铁矿石载氧体的煤催化燃烧[J]. 燃料化学学报,2012,40(10):1179−1187. doi: 10.3969/j.issn.0253-2409.2012.10.005

    ZHANG Si-wen, SHEN Lai-hong, XIAO Jun, GU Hai-ming, SONG Tao. Catalytic combustion of coal using alkali and transition metals loaded on iron ore oxygen carrier[J]. J Fuel Chem Technol,2012,40(10):1179−1187. doi: 10.3969/j.issn.0253-2409.2012.10.005
    [8]
    梅艳钢, 王志青, 高松平, 郑洪岩, 张郃, 房倚天. 碱金属与碱土金属在煤炭热转化过程中的影响研究进展[J]. 燃料化学学报,2020,48(4):385−394. doi: 10.3969/j.issn.0253-2409.2020.04.001

    MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHENG Hong-yan, ZHANG He, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. J Fuel Chem Technol,2020,48(4):385−394. doi: 10.3969/j.issn.0253-2409.2020.04.001
    [9]
    QIN Q, LIU H, ZHANG R, LING L, FAN M, WANG B. Application of density functional theory in studying CO2 capture with TiO2-supported K2CO3 being an example[J]. Appl Energy,2018,231:167−178. doi: 10.1016/j.apenergy.2018.09.114
    [10]
    DONG C, SHENG S, QIN W, QIANG L, YING Z, WANG X, ZHANG J. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system[J]. Appl Sur Sci,2011,257(20):8647−8652. doi: 10.1016/j.apsusc.2011.05.042
    [11]
    FENG Y, WANG N, GUO X, ZHANG S. Dopant screening of modified Fe2O3 oxygen carriers in chemical looping hydrogen production[J]. Fuel,2020,262:116489. doi: 10.1016/j.fuel.2019.116489
    [12]
    YAN J, SHEN L, OU Z, WU J, JIANG S, GU H. Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process[J]. Energy,2019,167:168−180. doi: 10.1016/j.energy.2018.09.075
    [13]
    MU L, HUO Z Y, CHU F, WANG Z, SHANG Y, YIN H, XU T. Assessment of the redox characteristics of iron ore by introducing Biomass ash in the chemical looping combustion process: Biomass ash type, constituent, and operating parameters[J]. ACS Omega,2021,6(33):21676−21689. doi: 10.1021/acsomega.1c03113
    [14]
    WHITE J A, BIRD D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations[J]. Phys Rev B,1994,50(7):4954−4957. doi: 10.1103/PhysRevB.50.4954
    [15]
    ZHANG X, SONG X, SUN Z, LI P, YU J. Density functional theory study on the mechanism of calcium sulfate reductive de composition by carbon monoxide[J]. Ind Eng Chem Res,2012,51(18):6563−6570.
    [16]
    YANG S, LI S, FILIMONOV S N, FUENTES-CABRERA M, LIU W. Principles of design for substrate-supported molecular switches based on physisorbed and chemisorbed states[J]. ACS Appl Mater Interfaces,2018,10:26772−26780. doi: 10.1021/acsami.8b07568
    [17]
    LIN C, WU Q, DONG C. Reduction effect of α-Fe2O3 on carbon deposition and CO oxidation during chemical-looping combustion[J]. Chem Eng J,2016,301:257−265. doi: 10.1016/j.cej.2016.04.136
    [18]
    袁妮妮, 白红存, 安梅, 胡修德, 郭庆杰. 化学链过程中Cu低浓度掺杂改性Fe-基载氧体反应性能: 实验与理论模拟[J]. 化工学报,2020,71(11):5294−5302.

    YUAN Ni-ni, BAI Hong-cun, AN Mei, HU Xiu-de, GUO Qing-jie. Reactivity of low-concentration Cu-doped modified Fe-based oxygen carrier in chemical looping: Experiments and theoretical simulations[J]. J Chem Ind Eng,2020,71(11):5294−5302.
    [19]
    LIU S, XIANG D, XU Y, SUN Z, CAO Y. Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first-principles study[J]. Appl Energy,2017,202:550−557. doi: 10.1016/j.apenergy.2017.05.178
    [20]
    YAN G, GAO Z, ZHAO M, MA K, DING X. Mechanism study on CO2 reforming of methane over platinum cluster doped graphene: A DFT calculation[J]. Mol Catal,2020,497:111205. doi: 10.1016/j.mcat.2020.111205
    [21]
    MARCINIAKA A A, HENRIQUEB F J F S, LIMA A F F, ALVES O C, MOREIRA C R, APPEL L G, MOTA C J A. What are the preferred CeO2 exposed planes for the synthesis of dimethyl carbonate? Answers from theory and experiments[J]. Mol Catal,2020,493:111053.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (451) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return