Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LI Bo-wen, HAN Qiao, YU Zong-bao, YANG Zhan-xu. Fabrication of 3D ordered mesoporous MoS2/C composite with few-layered MoS2 for electrochemical hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1288-1298. doi: 10.1016/S1872-5813(22)60019-7
Citation: LI Bo-wen, HAN Qiao, YU Zong-bao, YANG Zhan-xu. Fabrication of 3D ordered mesoporous MoS2/C composite with few-layered MoS2 for electrochemical hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1288-1298. doi: 10.1016/S1872-5813(22)60019-7

Fabrication of 3D ordered mesoporous MoS2/C composite with few-layered MoS2 for electrochemical hydrogen evolution

doi: 10.1016/S1872-5813(22)60019-7
Funds:  The project was supported by the National Natural Science Foundation of China (21671092), Liaoning Province "Xing Liao Talents" Innovation Leading Talent Project (XLYC1802057) and Liaoning Province-Shenyang National Research Center for Materials Science Joint R&D Fund Project (2019010280-JH3/301).
  • Received Date: 2022-03-18
  • Accepted Date: 2022-04-08
  • Rev Recd Date: 2022-04-05
  • Available Online: 2022-04-29
  • Publish Date: 2022-10-31
  • In this work, a 3D ordered mesoporous structure MoS2/C composite with few-layered MoS2 was synthesized by liquid phase nanocasting method, using SBA-15 as hard template, sucrose as carbon source and ammonium tetrathiomolybdate (ATTM) as MoS2 precursor. The limiting effect of amorphous carbon makes thin MoS2 slices evenly dispersed, and avoids occurrence of MoS2 agglomeration, resulting in the exposure of a large number of MoS2 edges as active sites. The 3D ordered mesoporous structure of the catalyst provides high specific surface areas and ensures transport channels for material and electron for electrochemical HER. As a result, the composite demonstrates efficient HER activity with an overpotential of 165 mV at current density of 10 mA/cm2, and a Tafel slope of 91.1 mV/dec under acidic conditions. This study provides a basis for constructing 3D HER catalyst with high specific surface area and few-layered MoS2 uniformly dispersed.
  • loading
  • [1]
    YU Z, YAO H, YANG Y, YUAN M, LI C, HE H, CHAN T-S, YAN D, MA S, ZAPOL P, KANATZIDIS M G. MoOxSy/Ni3S2 microspheres on Ni foam as highly efficient, durable electrocatalysts for hydrogen evolution reaction[J]. Chem Mater,2022,34(2):798−808. doi: 10.1021/acs.chemmater.1c03682
    [2]
    SONG Z Z, YU Z B, WU H D, XIAO W, GENG Z X, REN T Q, SHI C W, YANG Z X. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. J Fuel Chem Technol,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4
    [3]
    YAN D, ZHANG L, CHEN Z, XIAO W, YANG X. Nickel-based metal-organic framework-derived bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Acta Phys-Chim Sin,2020,10:2009054.
    [4]
    ZHU J, HU L, ZHAO P, LEE L Y S, WONG K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem Rev,2020,120(2):851−918. doi: 10.1021/acs.chemrev.9b00248
    [5]
    WAN L, SHI C-W, YU Z-B, WU H-D, XIAO W, GENG Z-X, REN T-Q, HAN Q, YANG Z-X. Preparation of WS2/C composite material and its electrocatalytic hydrogen evolution performance[J]. J Fuel Chem Technol,2021,49(9):1362−1370. doi: 10.1016/S1872-5813(21)60078-6
    [6]
    ZHENG Z, YU L, GAO M, CHEN X, ZHOU W, MA C, WU L, ZHU J, MENG X, HU J, TU Y, WU S, MAO J, TIAN Z, DENG D. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer[J]. Nat Commun,2020,11(1):3315. doi: 10.1038/s41467-020-17199-0
    [7]
    LI S, ZHOU S, WANG X, TANG P, PASTA M, WARNER J H. Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction[J]. Mater Today Energy,2019,13:134−144. doi: 10.1016/j.mtener.2019.05.002
    [8]
    JOYNER J, OLIVEIRA E F, YAMAGUCHI H, KATO K, VINOD S, GALVAO D S, SALPEKAR D, ROY S, MARTINEZ U, TIWARY C S, OZDEN S, AJAYAN P M. Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts[J]. ACS Appl Mater Interfaces,2020,12(11):12629−12638. doi: 10.1021/acsami.9b17713
    [9]
    BOLAR S, SHIT S, SAMANTA P, CHANDRA MURMU N, KOLYA H, KANG C-W, KUILA T. Conducting scaffold supported defect rich 3D rGO-CNT/MoS2 nanostructure for efficient HER electrocatalyst at variable pH[J]. Composites, Part B,2022,230:109489. doi: 10.1016/j.compositesb.2021.109489
    [10]
    DENG J, LI H, WANG S, DING D, CHEN M, LIU C, TIAN Z, NOVOSELOV K S, MA C, DENG D, BAO X. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. Nat Commun,2017,8:14430. doi: 10.1038/ncomms14430
    [11]
    GE J, ZHANG D, QIN Y, DOU T, JIANG M, ZHANG F, LEI X. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production[J]. Appl Catal B: Environ,2021,298:120557. doi: 10.1016/j.apcatb.2021.120557
    [12]
    WANG Y, WANG D, GAO J, HAO X, LI Z, ZHOU J, GAO F. Optimized electronic structure and p-band centre control engineering to enhance surface absorption and inherent conductivity for accelerated hydrogen evolution over a wide pH range[J]. Phys Chem Chem Phys,2020,22(26):14537−14543. doi: 10.1039/D0CP02131H
    [13]
    LUO M, LIU S, ZHU W, YE G, WANG J, HE Z. An electrodeposited MoS2-MoO3−x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution[J]. Chem Eng J,2022,428:131055. doi: 10.1016/j.cej.2021.131055
    [14]
    GE J, JIN J, CAO Y, JIANG M, ZHANG F, GUO H, LEI X. Heterostructure Ni3S4-MoS2 with interfacial electron redistribution used for enhancing hydrogen evolution[J]. RSC Adv,2021,11(32):19630−19638. doi: 10.1039/D1RA02828F
    [15]
    KEIVANIMEHR F, HABIBZADEH S, BAGHBAN A, ESMAEILI A, MOHADDESPOUR A, MASHHADZADEH A H, GANJALI M R, SAEB M R, FIERRO V, CELZARD A. Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: A theoretical study[J]. Sci Rep,2021,11(1):3958. doi: 10.1038/s41598-021-83562-w
    [16]
    WANG X, ZHANG Y, SI H, ZHANG Q, WU J, GAO L, WEI X, SUN Y, LIAO Q, ZHANG Z, AMMARAH K, GU L, KANG Z, ZHANG Y. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2[J]. J Am Chem Soc,2020,142(9):4298−4308. doi: 10.1021/jacs.9b12113
    [17]
    GE J, ZHANG D, JIN J, HAN X, WANG Y, ZHANG F, LEI X. Oxygen atoms substituting sulfur atoms of MoS2 to activate the basal plane and induce the phase transition for boosting hydrogen evolution[J]. Mater Today Energy,2021,22:100854. doi: 10.1016/j.mtener.2021.100854
    [18]
    ZHAO X, BAO J, ZHOU Y, ZHANG Y, SHENG X, WU B, WANG Y, ZUO C, BU X. Heterostructural MoS2/NiS nanoflowers via precise interface modification for enhancing electrocatalytic hydrogen evolution[J]. New J Chem,2022,24(12):8344.
    [19]
    YUN Q, LU Q, ZHANG X, TAN C, ZHANG H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion[J]. Angew Chem Int Ed Eng,2018,57(3):626−646. doi: 10.1002/anie.201706426
    [20]
    KIBSGAARD J, CHEN Z, REINECKE B N, JARAMILLO T F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nat Mater,2012,11:963−969. doi: 10.1038/nmat3439
    [21]
    LIU Y, LI W, WU H, LU S. Carbon dots enhance ruthenium nanoparticles for efficient hydrogen production in alkaline[J]. Acta Phys-Chim Sin,2021,37(1):2009082.
    [22]
    MENG X, YU L, MA C, NAN B, SI R, TU Y, DENG J, DENG D, BAO X. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction[J]. Nano Energy,2019,61:611−616. doi: 10.1016/j.nanoen.2019.04.049
    [23]
    ZHAI P, ZHANG Y, WU Y, GAO J, ZHANG B, CAO S, ZHANG Y, LI Z, SUN L, HOU J. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting[J]. Nat Commun,2020,11(1):5462. doi: 10.1038/s41467-020-19214-w
    [24]
    SHI Y F, WAN Y, LIU R L, TU B, ZHAO D Y. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route[J]. J Am Chem Soc,2007,129(30):9522−9531.
    [25]
    LU S, WANG W, YANG S, CHEN W, ZHUANG Z, TANG W, HE C, QIAN J, MA D, YANG Y, HUANG S. Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction[J]. Nano Res,2019,12(12):3116−3122. doi: 10.1007/s12274-019-2563-9
    [26]
    ZHU J, CHEN Z, JIA L, LU Y, WEI X, WANG X, WU W D, HAN N, LI Y, WU Z. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications[J]. Nano Re,2019,12(9):2250−2258. doi: 10.1007/s12274-019-2299-8
    [27]
    ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G, CHMELKA B F, STUCKY G. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Å pores[J]. Science,1998,279:5350.
    [28]
    柴永明, 赵会吉, 柳云骐, 刘晨光. 四硫代钼酸铵制备方法改进[J]. 无机盐工业,2007,39(5):12−15. doi: 10.3969/j.issn.1006-4990.2007.05.005

    CHAI Yong-ming, ZHAO Hui-ji, LIU Yun-ji, LIU Chen-guang. Improvement on preparation method of ammonium tetrathiomolybdate[J]. Inorganic Chemicals Industry,2007,39(5):12−15. doi: 10.3969/j.issn.1006-4990.2007.05.005
    [29]
    JUN S, JOO S H, RYOO R, KRUK M, JARONIEC M, LIU Z, OHSUNA T, TERASAKI O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J Am Chem Soc,2000,122(43):10712−10713. doi: 10.1021/ja002261e
    [30]
    OH I, YOUN J-S, PARK Y-K, JEON K-J. Heterostructure of 3D sea-grape-like MoS2/graphene on carbon cloth for enhanced water splitting[J]. Appl Surf Sci,2020,529(1):147089.
    [31]
    SUN D, MIAO X, HE Y, WANG L, ZHOU X, MA G, LEI Z. 3D interconnected porous graphitic carbon@MoS2 anchored on carbonized cotton cloth as an anode for enhanced lithium storage performance[J]. Electrochim Acta,2019,320(10):134616.
    [32]
    LIU S, LI B, MOHITE S V, DEVARAJI P, MAO L, XING R. Ultrathin MoS2 nanosheets in situ grown on rich defective Ni0.96S as heterojunction bifunctional electrocatalysts for alkaline water electrolysis[J]. Int J Hydrog Energy,2020,45(55):29929−29937. doi: 10.1016/j.ijhydene.2020.08.034
    [33]
    WANG Y, WEI R, ZHANG B, LV H, XU D, HAO Q, LIU B. Template-assisted self-sulfuration formation of MoS2 nanosheets embedded in ordered mesoporous carbon for lithium storage[J]. ACS Appl Energy Mater,2019,2(9):6158−6162. doi: 10.1021/acsaem.9b01262
    [34]
    LEI L, HUANG D, LAI C, ZHANG C, DENG R, CHEN Y, CHEN S, WANG W. Interface modulation of Mo2C@foam nickel via MoS2 quantum dots for the electrochemical oxygen evolution reaction[J]. J Mater Chem A,2020,8(30):15074−15085. doi: 10.1039/D0TA05045H
    [35]
    HUANG H, HUANG W, YANG Z, HUANG J, LIN J, LIU W, LIU Y. Strongly coupled MoS2 nanoflake-carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction[J]. J Mater Chem A,2017,5(4):1558−1566. doi: 10.1039/C6TA09612C
    [36]
    LIU N, YANG L, WANG S, ZHONG Z, HE S, YANG X, GAO Q, TANG Y. Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution[J]. J Power Sources,2015,275:588−594. doi: 10.1016/j.jpowsour.2014.11.039
    [37]
    GUO S W, GAO Z Y, SONG J L, BULIN C K, ZHANG B W. Electrocatalytic hydrogen evolution performance of ultra-thin MoS2 loaded graphene hybrids[J]. Chin J Inorg Chem,2019,35(7):1195−1202.
    [38]
    于静, 张婷, 刘琦, 刘婧媛, 王君. 氮掺杂碳纤维负载镍钴硒化物的制备及其电催化析氢性能[J]. 无机化学学报,2022,38(1):63−72. doi: 10.11862/CJIC.2022.021

    YU Jing, ZHANG Ting, LIU Qi, LIU Jing-yuan, WANG Jun. Preparation of nitrogen-doped carbon fiber supported nickel-cobalt selenides for electrocatalytic hydrogen evolution performance[J]. Chin J Inorg Chem,2022,38(1):63−72. doi: 10.11862/CJIC.2022.021
    [39]
    MCCRORY C C, JUNG S, FERRER I M, CHATMAN S M, PETERS J C, JARAMILLO T F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. JACS,2015,137(13):4347−4357.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (589) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return