Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
QU Xin-wang, ZUO Ping-ping, LI Yun-mei, LI Na, SHEN Wen-zhong. Mechanism for the catalytic thermal polycondensation of naphthalene at low temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1259-1269. doi: 10.1016/S1872-5813(22)60021-5
Citation: QU Xin-wang, ZUO Ping-ping, LI Yun-mei, LI Na, SHEN Wen-zhong. Mechanism for the catalytic thermal polycondensation of naphthalene at low temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1259-1269. doi: 10.1016/S1872-5813(22)60021-5

Mechanism for the catalytic thermal polycondensation of naphthalene at low temperature

doi: 10.1016/S1872-5813(22)60021-5
  • Received Date: 2022-01-11
  • Accepted Date: 2022-03-29
  • Rev Recd Date: 2022-03-11
  • Available Online: 2022-04-29
  • Publish Date: 2022-10-31
  • Naphthalene is an important component of high temperature coal tar and its content can reach more than 10%. Catalytic polycondensation of naphthalene is an effective way to prepare mesophase pitch and functional carbon materials. In this work, anhydrous AlCl3 was used as a catalyst for the polymerization of naphthalene under atmospheric pressure below 170 ℃ and the reaction mechanism was then systematically investigated. The results indicate that at 110 ℃, the polymer product is mainly composed of tricyclic compounds and the content of heavy products is only 29.5%. At 150 ℃, four to five peri-condensed aromatic compounds turn to be the main components and the content of medium components remains about 50%. At 170 ℃, there appear a large number of six-ring aromatic cores and the conversion of naphthalene reaches 90.7%. The polymer products exhibit good fluidity and solubility in THF, which can facilitate the high-temperature thermal polycondensation and subsequent graphitization process. With an AlCl3/naphthalene molar ratio of 1/100, the second to seventh order naphthalene oligomers are obtained by the simulation of the short chain oligomerization of naphthalene. In contrast, when the AlCl3/naphthalene molar ratio exceeds 10/100, acetylene and methylnaphthalene are produced by the catalytic pyrolysis of naphthalene. The mechanism of “Oligomerization-Pyrolysis-Aromatization” was then proposed to explain the molecular transformation from naphthalene to pitch, which should be useful for the production of mesophase pitch precursor.
  • loading
  • [1]
    KORD S, MIRI R, AYATOLLAHI S, ESCROCHI M. Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation[J]. Energy Fuels,2012,26(10):6186−6199. doi: 10.1021/ef300692e
    [2]
    LIM T H, KIM M S, YEO S Y, JEONG E. Preparation and evaluation of isotropic and mesophase pitch-based carbon fibers using the pelletizing and continuous spinning process[J]. J Ind Text,2018,48(7):1242−1253.
    [3]
    KO S, CHOI J E, LEE C W, JEON Y P. Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers[J]. Carbon Lett,2020,30(1):35−44. doi: 10.1007/s42823-019-00067-3
    [4]
    BARAN D, YARDIM M F, ATAKUL H, EKINCI E. Synthesis of carbon foam with high compressive strength from an asphaltene pitch[J]. New Carbon Mater,2013,28(2):127−1232. doi: 10.1016/S1872-5805(13)60071-2
    [5]
    QIN F, TIAN X, GUO Z, SHEN W. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chem Eng,2018,6(11):15708−15719. doi: 10.1021/acssuschemeng.8b04227
    [6]
    LEE K S, PARK C W, KIN J D. Synthesis of ZnO/activated carbon with high surface area for supercapacitor electrodes[J]. Colloid Surf A-Physicochem Eng Asp,2018,555:482−490. doi: 10.1016/j.colsurfa.2018.06.077
    [7]
    CHWASTIAK S, BARR J B, DIDCHENKO R. High strength carbon fibers from mesophase pitch[J]. Carbon,1979,17(1):49−53. doi: 10.1016/0008-6223(79)90069-1
    [8]
    TEKINALP H L, CERVO E G, FATHOLLAHI B, THIES M C. The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers[J]. Carbon,2013,52:267−277. doi: 10.1016/j.carbon.2012.09.028
    [9]
    LI P, ZONG Z, LIU F, WANG Y, WEI X, FAN X, ZHAO Y, ZHAO W. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel Process Technol,2015,136:1−7. doi: 10.1016/j.fuproc.2014.04.013
    [10]
    KIM C J, RYU S K, RHEE B S. Properties of coal-tar pitch-based mesophase separated by high-temperature centrifugation[J]. Carbon,1993,31(5):833−838. doi: 10.1016/0008-6223(93)90023-4
    [11]
    CERVO E G, THIES M C. Control of molecular weight distribution of petroleum pitches via multistage supercritical extraction[J]. J Supercrit Fluids,2010,51(3):345−352. doi: 10.1016/j.supflu.2009.09.010
    [12]
    HUTCHENSON K W, ROEBERS J R, THIES M C. Fractionation of petroleum pitch by supercritical fluid extraction[J]. Carbon,1991,29(2):215−223. doi: 10.1016/0008-6223(91)90072-Q
    [13]
    LI M, ZHANG Y, YU S, XIE C, LIU D, LIU S, ZHAO R, BIAN B. Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation[J]. RSC Adv,2018,8(53):30230−30238. doi: 10.1039/C8RA04679D
    [14]
    YAMADA Y, MATSUMOTO S, FUKUDA K, HONDA H. Optically anisotropic texture in tetrahydroqulnoline soluble matter of carbomceous mesophase[J]. Tanso,1981,107:144−146.
    [15]
    MOCHIDA I, KUDO K, FUKUDA N, TAKESHITA K, TAKAHASHI R. Carbonization of pitches — IV Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon,1975,13(2):135−139. doi: 10.1016/0008-6223(75)90270-5
    [16]
    HOSSEINI M S, CHARTRAND P. Thermodynamics and phase relationship of carbonaceous mesophase appearing during coal tar pitch carbonization[J]. Fuel,2020,275:117899.
    [17]
    MOCHIDA I, SAKANISHI K. Catalysis in coal liquefaction[J]. Adv Catal,1994,40:39−85.
    [18]
    YOON S H, KORAI Y, MOCHIDA I. Spinning characteristics of mesophase pitches derived from naphthalene and methylnaphthalene with HF BF3[J]. Carbon,1993,31(6):849−856. doi: 10.1016/0008-6223(93)90184-C
    [19]
    MOCHIDA I, KORAI Y, KU C, WATANABE F, SAKAI Y. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon,2000,38(2):305−328. doi: 10.1016/S0008-6223(99)00176-1
    [20]
    MOCHIDA I, INOUE S, MAEDA K, TAKESHITA K. Carbonization of aromatic hydrocarbons — VI Carbonization of heterocyclic compounds catalyzed by aluminum chloride[J]. Carbon,1977,15(1):9−16. doi: 10.1016/0008-6223(77)90068-9
    [21]
    FORTIN F, YOON S H, KORAI Y, MOCHIDA I. Reorganization of molecular alignment in naphthalene and methyl-naphthalene derived pitches[J]. Carbon,1994,32(5):979−989. doi: 10.1016/0008-6223(94)90058-2
    [22]
    YOON S H, KORAI Y, MOCHIDA I, KATO I. The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature range of their spinning[J]. Carbon,1994,32(2):273−280. doi: 10.1016/0008-6223(94)90190-2
    [23]
    TOSHIMA H, MOCHIDA I, KORAI Y, HINO T. Modification of petroleum-derived mesophase pitch by blending naphthalene-derived partially isotropic pitches[J]. Carbon,1992,30(5):773−779. doi: 10.1016/0008-6223(92)90161-O
    [24]
    MOCHIDA I, SHIMIZU K, KORAI Y, SAKAI Y, FUJIYAMA S, TOSHIMA H, HONO T. Mesophase pitch catalytically prepared from anthracene with HF BF3[J]. Carbon,1992,30(1):55−61. doi: 10.1016/0008-6223(92)90106-7
    [25]
    SALIM S S, BELL A T. Effects of Lewis acid catalysts on the hydrogenation and cracking of two-ring aromatic and hydroaromatic structures related to coal[J]. Fuel,1982,61(8):745−754. doi: 10.1016/0016-2361(82)90251-4
    [26]
    SALIM S S, BELL A T. Effects of Lewis acid catalysts on the hydrogenation and cracking of three-ring aromatic and hydroaromatic structures related to coal[J]. Fuel,1984,63(4):469−476. doi: 10.1016/0016-2361(84)90281-3
    [27]
    SAITOH T, ITOH H, HIRAIDE M. Admicelle-enhanced synchronous fluorescence spectrometry for the selective determination of polycyclic aromatic hydrocarbons in water[J]. Talanta,2009,79(2):177−182. doi: 10.1016/j.talanta.2009.03.022
    [28]
    CHEN S, XIE S, FAN C, GUO J, LI X. Microstructure and performance of carbonization products of component from soft coal pitch[J]. J Saudi Chem Soc,2018,22(3):316−321. doi: 10.1016/j.jscs.2016.06.003
    [29]
    BOROVIK A S, BARRON A R. Reaction of olefins with aluminium chloride stabilized arene-mercury complexes[J]. Main Group Chem,2005,4(2):135−144. doi: 10.1080/10241220500296951
    [30]
    LASKIN A, TAMBURU C, DUBNIKOVA F, LIFSHITZ A. Production of major reaction products in the initial steps of the thermal decomposition of naphthalene. Experimental shock-tube results and computer simulation[J]. Proc Combust Inst,2015,35(1):299−307. doi: 10.1016/j.proci.2014.06.019
    [31]
    CHOI Y, LEE J, SHIN J, LEE S, KIM D, LEE J K. Selective hydroconversion of naphthalenes into light alkyl-aromatic hydrocarbons[J]. Appl Catal A: Gen,2015,492:140−150. doi: 10.1016/j.apcata.2014.12.001
    [32]
    GARGIULO V, APICELLA B, ALFÈ M, RUSSO C, STANZIONE F, TREGROSSI A, AMORESANO A, MILLAN M, CIAJOLO A. Structural characterization of large polycyclic aromatic hydrocarbons. Part 1: The case of coal tar pitch and naphthalene-derived pitch[J]. Energy Fuels,2015,29(9):5714−5722. doi: 10.1021/acs.energyfuels.5b01327
    [33]
    ALFÈ M, APICELLA B, TREGROSSI A, CIAJOLO A. Identification of large polycyclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame[J]. Carbon,2008,46(15):2059−2066. doi: 10.1016/j.carbon.2008.08.019
    [34]
    HSIEH P Y, WIDEGREN J A, SLIFKA A J, HAGEN A J, RORRER R A L. Direct measurement of trace polycyclic aromatic hydrocarbons in diesel fuel with 1H and 13C NMR spectroscopy: Effect of PAH content on fuel lubricity[J]. Energy Fuels,2015,29(7):4289−4297. doi: 10.1021/acs.energyfuels.5b01193
    [35]
    SMIRNOV M B, POLUDETKINA E N, VANYUKOVA N A, PARENAGO O P. Comparative 13C NMR analysis of the composition of saturated petroleum and bitumenoid hydrocarbons: Potentialities and outlook[J]. Pet Chem,2011,51(2):107−116. doi: 10.1134/S0965544111020125
  • 2022-S001_支撑材料_燃料化学学报.docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (428) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return