Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
WANG Shu-qin, LI Xiao-xue, WU Jin-jin. Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1307-1315. doi: 10.1016/S1872-5813(22)60025-2
Citation: WANG Shu-qin, LI Xiao-xue, WU Jin-jin. Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1307-1315. doi: 10.1016/S1872-5813(22)60025-2

Preparation of TiO2/graphene oxide and their photocatalytic properties at room temperature

doi: 10.1016/S1872-5813(22)60025-2
Funds:  The project was supported by the National Basic Research Program of China (2018YFB060420103) and National Natural Science Foundation of Hebei Province (E2014502111)
  • Received Date: 2022-02-28
  • Accepted Date: 2022-04-27
  • Rev Recd Date: 2022-03-31
  • Available Online: 2022-05-05
  • Publish Date: 2022-10-31
  • TiO2/GO with different graphene oxide (GO) composite ratios were prepared by hydrothermal method and characterized by SEM, TEM, XRD, UV-vis, XPS, Raman and photocurrent. The results show that both TiO2 and GO/TiO2 crystal are anatase type. Part of GO is reduced to the reduced graphene oxide (RGO), properties of which are closer to that of graphene, when GO is prepared by hydrothermal reaction with butyl titanate. And such transformation is conducive to photoelectron transfer. Compared with pure TiO2, the composite TiO2/GO catalyst has a smaller grain size and a higher ratio of adsorbed oxygen/lattice oxygen, which is beneficial to the oxidation of NO. Moreover, lower band gap enhances the abilities of absorbing visible light and the photoelectron response over TiO2/GO catalyst. Therefore, the catalyst exhibits more excellent photocatalytic performance. The photocatalytic denitration performance of the composites was evaluated under visible light. When the GO composite ratio is 1.5%, the catalyst possesses the optimal photocatalytic denitration performance. When the ratio of ammonia to nitrogen is 1:1, the denitration efficiency can reach as high as 88.6%, which is 30% higher than that of self-made unmodified TiO2 and 40% higher than that of V-Ti-W catalyst. The anti-interference ability is significantly stronger than that of commercial V-Ti-W catalysts. It is concluded, from the mechanism analysis, that the oxidation rate of NO plays a key role in the process of photocatalytic denitration, and the presence of ammonia can accelerate the reduction of NO2.
  • loading
  • [1]
    GHOLAMI F, TOMAS M, GHOLAMI Z, VAKILI M. Technologies for the nitrogen oxides reduction from flue gas: A review[J]. Sci Total Environ,2020,714:136712.1−136712.26.
    [2]
    GONG X, ZHAO R, QIN J, WANG H, WANG D. Ultra-efficient removal of NO in a MOFs-NTP synergistic process at ambient temperature[J]. Chem Eng J,2019,358:291−298. doi: 10.1016/j.cej.2018.09.222
    [3]
    VAN CANEGHEM J, DE GREEF J, BLOVK C, VANDECASTEELE C. NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: a case study[J]. J Cleaner Prod,2016,112:4452−4460. doi: 10.1016/j.jclepro.2015.08.068
    [4]
    HAMOUD H I, LAFJAH M, DOUMA F, LEBEDEV O I, DJAFRE F, VALCHEV V, DATURI M, EL-ROZ M. Photo-assisted SCR over highly dispersed silver sub-nanoparticles in zeolite under visible light: An Operando FTIR study[J]. Sol Energy,2019,189:244−253. doi: 10.1016/j.solener.2019.07.020
    [5]
    李丹. MOFs和复合TiO2联合低温脱硝性能的实验研究[D]. 保定: 华北电力大学, 2019.

    LI Dan. The study on combined denitration performance at low temperature by MOFs and composited TiO2[D]. Baoding: North China Electric Power University , 2019.
    [6]
    ZHU C, LI G, LIAN Z, WAN Z, HUANG R, ZHANG S, ZHONG Q. Effect of synergy between oxygen vacancies and graphene oxide on performance of TiO2 for photocatalytic NO removal under visible light[J]. Sep Purif Technol,2021,276:119362. doi: 10.1016/j.seppur.2021.119362
    [7]
    甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 金红石相TiO2-石墨烯复合材料的制备及其光催化性能[J]. 物理化学学报, 2013, 29(2): 403–410.

    GAN Yong-ping, QIN Huai-peng, HUANG Hui, TAO Xin-yong, FANG Jun-wu, ZHANG Wen-kui. Preparation and photocatalytic activity of rutile TiO2-graphene composites[J]. Acta Phys -Chim Sin, 2013, 29(2): 403–410.
    [8]
    WANG W-S, WANG D-H, QU W-G, LU L-Q, XU A-W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity[J]. J Phys Chem C,2012,116(37):19893−19901. doi: 10.1021/jp306498b
    [9]
    龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 部分还原氧化石墨烯/二氧化钛复合材料的水热合成及其光催化活性[J]. 物理化学学报, 2013, 29(6): 1344–1350.

    LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-wei, DONG Zhi-jun, YUAN Guan-ming. Hydrothermal synthesis and photocatalytic activity of partially reduced graphene oxide/TiO2 composite[J]. Acta Phys -Chim Sin, 2013, 29(6): 1344–1350.
    [10]
    TRAPALIS A, TODOROVA N, GIANNAKOPOULOU T, BOUKOS N, SPELIOTIS T, DIMOTIKALI D, YU J. TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide[J]. Appl Catal B: Environ,2016,180:637−647. doi: 10.1016/j.apcatb.2015.07.009
    [11]
    ATOUT H, ÁLVAREZ M G, CHEBLI D, BOUGUETTOUCHA A, TICHIT D, LLORCA J, MEDINA F. Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods[J]. Mater Res Bull,2017,95:578−587. doi: 10.1016/j.materresbull.2017.08.029
    [12]
    ZHAO D, SHENG G, CHEN C, WANG X. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure[J]. Appl Catal B: Environ,2012,111−112:303−308. doi: 10.1016/j.apcatb.2011.10.012
    [13]
    HU J, LI H, MUHAMMAD S, WU Q, ZHAO Y, JIAO Q. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances[J]. J Solid State Chem,2017,253:113−120. doi: 10.1016/j.jssc.2017.05.034
    [14]
    WANG J, WANG M, XIONG J-R, LU C-H. Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene[J]. Carbon,2015,95:357−363.
    [15]
    QI Q, WANG Y-Q, WANG S-S, QI H-N, WEI T, SUN Y-M. Preparation of reduced graphene oxide/TiO2 nanocomposites and their photocatalytic properties[J]. Acta Phys-Chim Sin,2015,31(12):2332−2340. doi: 10.3866/PKU.WHXB201510202
    [16]
    HUANG X, YIN Z, WU S, QI X, HE Q, ZHANG Q, YAN Q, BOEY F, ZHANG H. Graphene-based materials: Synthesis, characterization, properties, and applications[J]. Small,2011,7(14):1876−1902. doi: 10.1002/smll.201002009
    [17]
    RAZA W, HAQUE M M, MUNEER M, FLEISCH M, HAKKI A, BaAHNEMANN D. Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO2 hybrid carbon spheres[J]. J Alloys Compd,2015,632:837−844. doi: 10.1016/j.jallcom.2015.01.222
    [18]
    SUN M, LI W, SUN S, HE J, ZHANG Q, SHI Y. One-step in situ synthesis of graphene–TiO2 nanorod hybrid composites with enhanced photocatalytic activity[J]. Mater Res Bull,2015,61:280−286. doi: 10.1016/j.materresbull.2014.10.040
    [19]
    FU Y, ZHANG J, LIU H, HISCOX W C, GU Y. Ionic liquid-assisted exfoliation of graphite oxide for simultaneous reduction and functionalization to graphenes with improved properties[J]. J Mater Chem A,2013,1(7):2663−2674. doi: 10.1039/c2ta00353h
    [20]
    MOON I K, LEE J, RUOFF R S, LEE H. Reduced graphene oxide by chemical graphitization[J]. Nat Commun,2010,1:1−6.
    [21]
    NGUYEN-PHAN T-D, PHAM V H, SHIN E W, PHAM H-D, KIM S, CHUNG J S, KIM E J, HUR S H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites[J]. Open Chem Eng J,2011,170(1):226−232.
    [22]
    NUR H. Modification of titanium surface species of titania by attachment of silica nanoparticles[J]. Mater Sci Eng B,2006,133(1/3):49−54. doi: 10.1016/j.mseb.2006.05.003
    [23]
    PHAM T-T, NGUYEN-HUY C, LEE H-J, NGUYEN-PHAN T-D, SON T H, KIM C-K, SHIN E W. Cu-doped TiO2/reduced graphene oxide thin-film photocatalysts: Effect of Cu content upon methylene blue removal in water[J]. Ceram Int,2015,41(9):11184−11193. doi: 10.1016/j.ceramint.2015.05.068
    [24]
    YAN X, LI X, LU G, YU L, YAO C. Preparation of La1−xCexNiO3/attapulgite nanocomposite and its photo-selective catalytic reduction for NOx removal[J]. J Chin Chem Soc,2017,45(5):743−748.
    [25]
    BENSOUICI F, BOUOUDINA M, DAKHEL A A, TALA-IGHIL R, TOUNANE M, IRATNI A, SOUIER T, LIU S, CAI W. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films[J]. Appl Surf Sci,2017,395:110−116. doi: 10.1016/j.apsusc.2016.07.034
    [26]
    刘建芝. 改性ZnO的制备及低温脱除NO的研究[D]. 保定: 华北电力大学, 2018.

    LIU Jian-zhi. Preparation of modified ZnO and removal of NO at low temperature[D]. Baoding: North China Electric Power University , 2018.
    [27]
    WANG D, LI X, CHEN J, TAO X. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation[J]. Chem Eng J,2012,198−199:547−554. doi: 10.1016/j.cej.2012.04.062
    [28]
    LIU B, HUANG Y, WEN Y, DU L, ZENG W, SHI Y, ZHANG F, ZHUG, XU X, WANG Y. Highly dispersive {001} facets-exposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst[J]. J Mater Chem,2012,22(15):7484−7491. doi: 10.1039/c2jm16114a
    [29]
    LEE J S, YOU K H, PARK C B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene[J]. Adv Mater,2012,24(8):1084−1088. doi: 10.1002/adma.201104110
    [30]
    周琪. 石墨烯基二氧化钛纳米复合材料的制备与光催化性能研究[D]. 合肥: 合肥工业大学, 2014.

    ZHOU Qi. Preparation and photocatalytic properties of graphene based TiO2 nanocomposites[D]. Hefei: Hefei University of Technology , 2014.
    [31]
    杜志辉. 改性TiO2脱硝性能的实验研究[D]. 保定: 华北电力大学, 2017.

    DU Zhi-hui. The experimental research on modification of TiO2 denitration[D]. Baoding: North China Electric Power University , 2017.
    [32]
    LIU S, YU J, JARONIEC M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications[J]. Chem Mater,2011,23(18):4085−4093. doi: 10.1021/cm200597m
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1718) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return