Volume 50 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
SUN Quan-feng, HAN Qiao, YANG Zhan-xu. Preparation of N-doped MoP-based core-shell nanorods and their electrocatalytic performance in hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1437-1448. doi: 10.1016/S1872-5813(22)60026-4
Citation: SUN Quan-feng, HAN Qiao, YANG Zhan-xu. Preparation of N-doped MoP-based core-shell nanorods and their electrocatalytic performance in hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1437-1448. doi: 10.1016/S1872-5813(22)60026-4

Preparation of N-doped MoP-based core-shell nanorods and their electrocatalytic performance in hydrogen evolution

doi: 10.1016/S1872-5813(22)60026-4
Funds:  The project was supported by the National Natural Science Foundation of China (21671092), Liaoning Province "Xing Liao Talents" Innovation Leading Talent Project (XLYC1802057) and Liaoning Province-Shenyang National Research Center for Materials Science Joint R&D Fund Project (2019010280-JH3/301).
  • Received Date: 2022-03-25
  • Accepted Date: 2022-04-22
  • Rev Recd Date: 2022-04-20
  • Available Online: 2022-05-12
  • Publish Date: 2022-11-30
  • N-doped MoP-based core-shell nanorods (N-MoP/NC-8) were synthesized by in-situ phosphorization of molybdenum trioxide-ethylenediamine organic-inorganic hybrid material (MoO3/EDA) via a gas-solid reaction; their electrocatalytic performance in hydrogen evolution was investigated. The results indicate that N-MoP/NC-8 is composed of N-doped molybdenum phosphide (MoP) coated by N-doped carbon layer. The introduced electronegative atom can regulate the electronic structure of the active phase, whilst the combination of carbon layer and MoP can inhibit the internal agglomeration of MoP, resulting in large pore volume and surface area. Owing to such a dual effect, the N-MoP/NC-8 catalyst shows excellent performance in electrocatalytic hydrogen evolution and great charge transfer ability; the overpotential is 92 mV at 10 mA/cm2 current density in 0.5 mol/L H2SO4 solution, with a Tafel slope of 68 mV/dec and a durability of above 20 h.
  • loading
  • [1]
    HASAN A, DINCER I. Comparative assessment of various gasification fuels with waste tires for hydrogen production[J]. Int J Hydrog Energy,2020,44(34):18818−18826.
    [2]
    HOSSEINI S E, WAHID M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable Sustainable Energy Rev,2016,57:850−866. doi: 10.1016/j.rser.2015.12.112
    [3]
    TURNER J A. Sustainable hydrogen production[J]. Science,2004,305(5686):972−974. doi: 10.1126/science.1103197
    [4]
    MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nat Commun,2020,11(1):1550. doi: 10.1038/s41467-020-15355-0
    [5]
    DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334(6058):928−935. doi: 10.1126/science.1212741
    [6]
    SARAWUTANUKULAB S, PHATTHARASUPAKUNAB N, SAWANGPHRUK M. 3D CVD graphene oxide-coated Ni foam as carbo-and electro-catalyst towards hydrogen evolution reaction in acidic solution: In situ electrochemical gas chromatography[J]. Carbon,2019,151:109−119. doi: 10.1016/j.carbon.2019.05.058
    [7]
    SONG H Q, LI Y H, SHANG L, TANG Z Y, ZHANG T R, LU S Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium[J]. Nano Energy,2020,72:104730. doi: 10.1016/j.nanoen.2020.104730
    [8]
    KUMAR R, AHMED Z, KAUR H, BERA C, BAGCHI V. Probing into the effect of heterojunctions between Cu/Mo2C/Mo2N on HER performance[J]. Catal Sci Technol,2020,10:2213−2220. doi: 10.1039/C9CY02526J
    [9]
    HOU X B, MENSAH A, ZHAO M, CAI Y B, WEI Q F. Facile controlled synthesis of monodispersed MoO3-MoS2 hybrid nanospheres for efficient hydrogen evolution reaction[J]. Appl Surface Sci,2020,529:147115. doi: 10.1016/j.apsusc.2020.147115
    [10]
    FENG Z C, LIANG C H, WU W C, VAN SANTEN R A, LI C. Carbon monoxide adsorption on molybdenum phosphides: Fourier transform infrared spectroscopic and density functional theory studies[J]. J Phys Chem B,2003,107(49):13698−13702. doi: 10.1021/jp035351p
    [11]
    HUANG L C, YANG Y, C ZHANG X, YU H, WANG T T, DONG X T, LI D, LIU Z L. Nanostructured MoO2/MoS2/MoP heterojunction electrocatalyst for hydrogen evolution reaction[J]. Nanotechnol,2020,31(22):225403. doi: 10.1088/1361-6528/ab767a
    [12]
    SHI Y M, ZHANG B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chem Soc Rev,2016,45:1529−1541. doi: 10.1039/C5CS00434A
    [13]
    XIAO W Y, LI X, FU C C, ZHAO X W, CHENG Y H, ZHANG J Y. Morphology and distribution of in-situ grown MoP nanoparticles on carbon nanotubes to enhance hydrogen evolution reaction[J]. J Alloys Compd,2021,877(5):160214.
    [14]
    YANG J, ZHANG F J, WANG X, HE D S, WU G, YANG Q H, HONG X, WU Y, LI Y D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution[J]. Angew Chem Int Ed,2016,128(41):13046−13050. doi: 10.1002/ange.201604315
    [15]
    ZHU J, HU L S, ZHAO P X, LEE L Y S, WONG K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem Rev,2020,120(2):851−918. doi: 10.1021/acs.chemrev.9b00248
    [16]
    ANJUM M A R, LEE J S. Sulfur and nitrogen dual-doped molybdenum phosphide nanocrystallites as an active and stable hydrogen evolution reaction electrocatalyst in acidic and alkaline media[J]. ACS Catal,2017,7(4):3030−3038. doi: 10.1021/acscatal.7b00555
    [17]
    SUN A K, SHEN Y L, WU Z Z, WANG D Z. N-doped MoP nanoparticles for improved hydrogen evolution[J]. Int J Hydrog Energy,2017,42(21):14566−14571. doi: 10.1016/j.ijhydene.2017.04.122
    [18]
    PI C R, HUANG C, YANG Y X, SONG H, ZHANG X M, ZHENG Y, GAO B, FU J J, CHU P K, HUO K F. In situ formation of N-doped carbon-coated porous MoP nanowires: A highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range[J]. Appl Catal B: Environ,2020,263:118358. doi: 10.1016/j.apcatb.2019.118358
    [19]
    INGHAM B, CHONG S V, TALLON J L. Layered tungsten oxide-based organic-inorganic hybrid materials:   An infrared and Raman study[J]. J Phys Chem B,2005,109(11):4936−4940. doi: 10.1021/jp045066l
    [20]
    XU J, LIAO Z H, ZHANG J B, GAO B, CHU P K, HUO K F. Heterogeneous phosphorus-doped WO3-x/nitrogen-doped carbon nanowires with high-rate and long-life for advanced lithium-ion capacitors[J]. J Mater Chem A,2018,6:6916−6921. doi: 10.1039/C8TA00639C
    [21]
    GAO Q S, CHEN P, ZHANG Y H, Tang Y. Synthesis and characterization of organic-inorganic hybrid GeOx/ethylenediamine nanowires[J]. Adv Mater,2008,20(10):1837−1842. doi: 10.1002/adma.200701646
    [22]
    YAMAMOTO Y, SEIGO G. Friction and wear characteristics of molybdenum dithiocarbamate and molybdenum dithiophosphate[J]. Tribol T,1989,32(2):251−257. doi: 10.1080/10402008908981886
    [23]
    MENG F L, QI T Y, ZHANG J J, ZHU H M, YUAN Z Y, LIU C Y, QIN W B, DING M N. MoS2-templated porous hollow MoO3 microspheres for highly selective ammonia sensing via a Lewis acid-base interaction[J]. IEEE Trans Ind Electron,2021,69(1):960−970.
    [24]
    LI W, XIA F, QU J, LI P, CHEN D H, CHEN Z, YU Y, LU Y, CARUSO R A, SONG W G. Versatile inorganic-organic hybrid WOx-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis[J]. Nano Res,2014,7(6):903−916. doi: 10.1007/s12274-014-0452-9
    [25]
    SHEN Y H, JIANG Y L, YANG Z Z, DONG J, YANG W, AN Q Y, MAI L Q. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage[J]. Adv Sci,2022,9(6):2104504. doi: 10.1002/advs.202104504
    [26]
    XING Z C, LIU Q, ASIRI A M, SUN X P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water[J]. Adv Mater,2014,26(32):5702−5707. doi: 10.1002/adma.201401692
    [27]
    PU Z H, AMIINU I S, LIU X B, WANG M, MU S C. Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation[J]. Nanoscale,2016,8:17256−17261. doi: 10.1039/C6NR05564H
    [28]
    BOKOBZA L, BRUNEEL J L, COUZI M. Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites[J]. C,2015,1(1):77−94.
    [29]
    LIU B C, LI H, CAO B, JIANG J N, GAO R, ZHANG J. Few layered N, P Dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: An ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range[J]. Adv Funct Mater,2018,28(30):1801527. doi: 10.1002/adfm.201801527
    [30]
    XIAO P, ALAMSK M, THIA L, GE X M, JERNLIM R, WANG J Y, HWALIM K, WANG X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy Environ Sci,2014,7(8):2624−2629. doi: 10.1039/C4EE00957F
    [31]
    HUANG C, PI C R, ZHANG X M, DING K, QIN P, FU J J, PENG X, GAO B, CHU P K, HUO K F. In situ synthesis of MoP Nanoflakes intercalated N-doped graphene nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction[J]. Small,2018,14(25):1800667. doi: 10.1002/smll.201800667
    [32]
    CHEN N N, MO Q J, HE L Q, HUANG X Q, YANG L C, ZENG Z C, GAO Q S. Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochim Acta,2019,299:708−716. doi: 10.1016/j.electacta.2019.01.054
    [33]
    CHEN N N, ZHANG W B, ZENG J C, HE L Q, LI D, GAO Q S. Plasma-engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution[J]. Appl Catal B: Environ,2020,265(5):118441.
    [34]
    DENG C, XIE J Z, XUE Y F, HE M, WEI X T, YAN Y M. Synthesis of MoP decorated carbon cloth as a binder-free electrod for hydrogen evolution[J]. RSC Adv,2016,6(73):68568−68573. doi: 10.1039/C6RA12456A
    [35]
    SUN J, ZHENG G Y, LEE H-W, LIU N, WANG H T, YAO H B, YANG W S, CUI Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Lett,2014,14(8):4573−4580. doi: 10.1021/nl501617j
    [36]
    WU J J, LIU M J, SHARMA P P, YADAV R M, MA L L, YANG Y C, ZOU X L, ZHOU X-D, VAJTAI R, YAKOBSON B I, LOU J, AJAYAN P M. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Lett,2016,16(1):466−470. doi: 10.1021/acs.nanolett.5b04123
    [37]
    SONG J X, YU Z X, GORDIN M L, HU S, YI R, TANG D H, WALTER T, REGULA M, CHOI D, LI X L, MANIVANNAN A, WANG D H. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J]. Nano Lett,2014,14(11):6329−6335. doi: 10.1021/nl502759z
    [38]
    CHAI L Y, YUAN W Y, CUI X, JIANG H Y, TANG J W, GUO X H. Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: Towards high activity and stability for hydrogen evolution reaction over a wide pH range[J]. RSC Adv,2018,8:26871−26879. doi: 10.1039/C8RA03909G
    [39]
    LIN M T, LU R H, LUO W, XU N, ZHAO Y, MAI L Q. Active site identification and interfacial design of a MoP/N-doped carbon catalyst for efficient hydrogen evolution reaction[J]. ACS Appl Energy Mater,2021,4(6):5486−5492. doi: 10.1021/acsaem.1c00121
    [40]
    TANG C, GAN L F, ZHANG R, LU W B, JIANG X, ASIRI A M, SUN X P, WANG J, CHEN L. Ternary FexCo1−xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight[J]. Nano Lett,2016,16(10):6617−6621. doi: 10.1021/acs.nanolett.6b03332
    [41]
    TIAN H, CUI X Z, ZENG L M, SU L, SONG Y L, SHI J L. Oxygen vacancy-assisted hydrogen evolution reaction of Pt/WO3 electrocatalyst[J]. J Mater Chem A,2019,7:6285−6293. doi: 10.1039/C8TA12219A
    [42]
    ZHANG Y X, YAN J Q, REN X P, PANG L Q, CHEN H, LIU S Z. 2D WS2 nanosheet supported Pt nanoparticles for enhanced hydrogen evolution reaction[J]. Int J Hydrog Energy,2017,42(8):5472−5477. doi: 10.1016/j.ijhydene.2016.08.225
    [43]
    ZHOU P P, ZHANG Y Q, YE B, QIN S, ZHANG R R, CHEN T Y, XU H Z, ZHENG L, YANG Q H. MoP/Co2P hybrid nanostructure anchored on carbon fiber paper as an effective electrocatalyst for hydrogen evolution[J]. ChemCatChem,2019,11(24):6086−6091. doi: 10.1002/cctc.201900948
    [44]
    HUANG Y, SONG X N, DENG J, ZHA C Y, HUANG W J, WU Y L, LI Y G. Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis[J]. Appl Catal B: Environ,2019,245:656−661. doi: 10.1016/j.apcatb.2019.01.034
    [45]
    宋楗, 韩乔, 杨占旭. NiMoP/C复合材料的制备及其电催化析氢性能[J]. 石油化工高等学校学报,2022,35(1):1−9. doi: 10.3969/j.issn.1006-396X.2022.01.001

    SONG Jian, HAN Qiao, YANG Zhan-xu. Preparation of NiMoP/C composites and their electrocatalytic performance in hydrogen evolution[J]. J Petrochem Univ,2022,35(1):1−9. doi: 10.3969/j.issn.1006-396X.2022.01.001
    [46]
    GE R Y, HUO J J, LIAO T, LIU Y, ZHU M Y, LI Y, ZHANG J J, LI W X. Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction[J]. Appl Catal B: Environ,2020,260:118196. doi: 10.1016/j.apcatb.2019.118196
    [47]
    LEE M H, YOUN D H, LEE J S. Nanostructured molybdenum phosphide/N-doped carbon nanotube-graphene composites as efficient electrocatalysts for hydrogen evolution reaction[J]. Appl Catal A: Gen,2020,594(25):117451.
    [48]
    WANG C, LI W, WANG X D, YU N, SUN H X, GENG B Y. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction[J]. Nano Res,2021,15:1824−1830.
    [49]
    JIAO Y Q, YAN H J, WANG R H, WANG X W, ZHANG X M, WU A P, TIAN C G, JIANG B J, FU H G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst[J]. ACS Appl Mater Interfaces,2020,12(44):49596−49606. doi: 10.1021/acsami.0c13533
    [50]
    LIU T T, LIU H, WU X J, NIU Y L, FENG B M, LI W, HU W H, LI C M. Molybdenum carbide/phosphide hybrid nanoparticles embedded P, N co-doped carbon nanofibers for highly efficient hydrogen production in acidic, alkaline solution and seawater[J]. Electrochim Acta,2018,28(10):710−716.
    [51]
    PU Z H, WEI S Y, CHEN Z B, MU S C. Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range[J]. Appl Catal B: Environ,2016,196(5):193−198.
    [52]
    ZHAO Y, WANG S, LI C Y, YU X B, ZHU C L, ZHANG X T, CHEN Y J. Nanostructured molybdenum phosphide/N, P dual-doped carbon nanotube composite as electrocatalysts for hydrogen evolution[J]. RSC Adv,2016,6:7370−7377. doi: 10.1039/C5RA24773J
  • 2022-D015_2022-DO15支撑材料_燃料化学学报(1).docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (464) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return