Volume 50 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
QIU Xin-ling, CHAI Rui-dong, ZHONG Fu, DI Xiu-ling, LU Jiang-yin. Investigate of the optimum process conditions for Co/HZSM-5 catalyzed propane dehydrogenation by a response surface method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1498-1510. doi: 10.1016/S1872-5813(22)60027-6
Citation: QIU Xin-ling, CHAI Rui-dong, ZHONG Fu, DI Xiu-ling, LU Jiang-yin. Investigate of the optimum process conditions for Co/HZSM-5 catalyzed propane dehydrogenation by a response surface method[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1498-1510. doi: 10.1016/S1872-5813(22)60027-6

Investigate of the optimum process conditions for Co/HZSM-5 catalyzed propane dehydrogenation by a response surface method

doi: 10.1016/S1872-5813(22)60027-6
Funds:  The project was supported by the National Natural Science Foundation of China (21968034).
More Information
  • Corresponding author: Tel: +86-13999880781, E-mail: jiangyinlu6410@163.com
  • Received Date: 2022-02-23
  • Accepted Date: 2022-04-22
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-05-12
  • Publish Date: 2022-11-30
  • Co/HZSM-5 catalyst was fabricated for catalytic dehydrogenation of propane to propylene, which was pretreated to allow the reaction to react at low temperatures. A response surface approach was employed to examine the effect of process conditions on the reaction. The morphological and oxidative performance of Co/HZSM-5 was characterized by XRD, XPS, SEM, NH3-TPD, H2-TPR, and nitrogen physical absorption-desorption. Besides, the in-situ catalyst performance was evaluated by a fixed-bed reactor. Combining the actual experimental conditions, the optimal process conditions parameters obtained by the response surface method were as follows: a reaction temperature of 461 °C, a Co loading of 2.4%, and a GHSV of 4300 h−1. At this point, the propylene yield reached 27.7% and the corresponding propylene selectivity was up to 93.8%.
  • loading
  • [1]
    SPEIGHT J. G. Ullmann's encyclopedia of industrial chemistry[J]. Petrol Sci Technol,1999,17(3/4):445−445. doi: 10.1080/10916469908949727
    [2]
    ZHAO D, YUAN M, ZHANG Y, JIANG G, SUN H. Incorporation of Cr in ZSM-5 zeolite framework as bifunctional catalysts for n-butane catalytic cracking[J]. CIESC J,2016,67(08):3400−3407.
    [3]
    XU Z, YUE Y, BAO X, XIE Z, ZHU H. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework[J]. ACS Catal,2020,10:818−828. doi: 10.1021/acscatal.9b03527
    [4]
    FRICKE C, RAJBANSHI B, WALKER E A, TEREJANU G, HEYDEN A. Propane dehydrogenation on platinum catalysts: Identifying the active sites through Bayesian analysis[J]. ACS Catal,2022,12(4):2487−2498. doi: 10.1021/acscatal.1c04844
    [5]
    HU Z P, WANG Y, YANG D, YUAN Z Y. CrO supported on high-silica HZSM-5 for propane dehydrogenation[J]. J Energy Chem,2020,47:225−233. doi: 10.1016/j.jechem.2019.12.010
    [6]
    LIOTTA L F, PANTALEO G, MACALUSO A, CARLO G D, DEGANELLO G. CoOx catalysts supported on alumina and alumina-baria: influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions[J]. Appl Catal A: Gen,2003,245(1):167−177. doi: 10.1016/S0926-860X(02)00652-X
    [7]
    ZHANG Y, ZHOU Y, SHI J, ZHOU S, SHENG X, ZHANG Z, XIANG S. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation[J]. J Mol Catal A: Chem,2014,381:138−147. doi: 10.1016/j.molcata.2013.10.007
    [8]
    DEWANGAN N, ASHOK J, SETHIA M, DAS S, PATI S, KUS H, KAWI S. Cobalt‐Based catalyst supported on different morphologies of alumina for non‐oxidative propane dehydrogenation: Effect of metal support interaction and lewis acidic sites[J]. ChemCatChem,2019,11(19):4923−4934. doi: 10.1002/cctc.201900924
    [9]
    XU Y, YU W, ZHANG H, XIN J, HE X, LIU B, JIANG F, LIU X. Suppressing C–C bond dissociation for efficient ethane dehydrogenation over the isolated Co(II) sites in SAPO-34[J]. ACS Catal,2021,13001−13019.
    [10]
    LEI, LIU, QING-FANG, DENG, BAO, AGULA, XU, ZHAO, TIE-ZHEN, REN. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene[J]. Chem Commun,2011,47(29):8334−8336. doi: 10.1039/c1cc12806j
    [11]
    LIU L, DENG Q F, BAO A, REN T Z, LIU Y P, BAO Z, YUAN Z Y. Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene[J]. Catal Today,2012,186(1):35−41. doi: 10.1016/j.cattod.2011.08.022
    [12]
    LIU L, DENG Q F, LIU Y P, REN T Z, YUAN Z Y. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene[J]. Catal Commun,2011,16(1):81−85. doi: 10.1016/j.catcom.2011.09.005
    [13]
    CAO T, DAI X, LI F, LIU W, BAI Y, FU Y, QI W. Efficient non-precious metal catalyst for propane dehydrogenation: Atomically dispersed cobalt-nitrogen compounds on carbon nanotubes[J]. ChemCatChem,2021,13(13):3067−3073. doi: 10.1002/cctc.202100410
    [14]
    WANG Q, XU W, MA Z, YU F, CHEN Y, LIAO H, WANG X, ZHOU J. Highly effective direct dehydrogenation of propane to propylene by microwave catalysis at low temperature over Co-Sn/NC microwave catalyst[J]. ChemCatChem,2020,13(3):1009−1022.
    [15]
    ZHANG Y, ZHOU Y, QIU A, YU W, YI X, WU P. Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter[J]. Catal Commun,2006,7(11):860−866. doi: 10.1016/j.catcom.2006.03.016
    [16]
    ZHANG Y, ZHOU Y, HUANG L, ZHOU S, SHENG X, WANG Q, ZHANG C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chem Eng J,2015,270:352−361. doi: 10.1016/j.cej.2015.01.008
    [17]
    GONG J J, LI S C, ZHOU H L, XU B L, FAN Y N. Promotional effect of Nain the supported PtSnNa/SUZ-4 catalysts for propane dehydrogenation[J]. J Fuel Chem Technol,2015,43(7):857−861.
    [18]
    HUANG C, HAN D, GUAN L, ZHU L, MEI Y, HE D, ZU Y. Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation[J]. Fuel,2022,307:121790. doi: 10.1016/j.fuel.2021.121790
    [19]
    GUO-HAO X U, JIN-PENG Y U, HUA-SHENG X U, CHUN-CHENG L I, WANG P F. Catalystic performance of HZSM-5 zeolite treated by CH3COONa[J]. J Inorg Mater,2019,34(5):546. doi: 10.15541/jim20180336
    [20]
    YANG S H, CUI Y D, CHEN X J, TU X. Development of synthesis and surface modification of ZSM-5 zeolite molecular sieves[J]. Adv Fine Fetrochem,2003,(4):47−50.
    [21]
    TIAN H F, HE H H, LIAO J K, ZHA F, GUO X J, TANG X H. Catalytic performance of different zeolites for propane and CO2 coupling to propylene[J]. J Fuel Chem Technol,2021,49(4):495−503. doi: 10.1016/S1872-5813(21)60029-4
    [22]
    OKUHARA S T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J]. Microporous Mesoporous Mater,2001,43(1):83−89. doi: 10.1016/S1387-1811(00)00349-8
    [23]
    LAPIDUS A, KRYLOVA A, KAZANSKII V. Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts Part I. Physico-chemical properties of 10% cobalt/alumina and 10% cobalt/silica[J]. Appl Catal,1991,73(1):849−850.
    [24]
    WANG W J, CHEN Y W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts[J]. Appl Catal,1991,77(2):223−233. doi: 10.1016/0166-9834(91)80067-7
    [25]
    ARNOLDY P, FRANKEN M C, SCHEFFER B, MOULIJN J A. Temperature-programmed reduction of CoOMoO3Al2O3 catalysts[J]. J Catal,1985,96(2):381−395. doi: 10.1016/0021-9517(85)90308-2
    [26]
    MARTÍNEZ A, L PEZ C, M RQUEZ F, DÍAZ I. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters[J]. J Catal,2003,220(2):486−499. doi: 10.1016/S0021-9517(03)00289-6
    [27]
    HYMAN M P, VOHS J M. Reaction of ethanol on oxidized and metallic cobalt surfaces[J]. Surf Sci,2011,605(3/4):383−389. doi: 10.1016/j.susc.2010.11.005
    [28]
    SUN Y, WU Y, SHAN H, LI C. Studies on the nature of active cobalt species for the production of methane and propylene in catalytic dehydrogenation of propane[J]. Catal Lett,2015,145(7):1413−1419. doi: 10.1007/s10562-015-1533-4
    [29]
    SARTIPI S, ALBERTS M, SANTOS V P, NASALEVICH M, GASCON J, KAPTEIJN F. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis[J]. ChemCatChem,2014,6(1):142−151. doi: 10.1002/cctc.201300635
    [30]
    YU S Y, YU G J, LI W, IGLESIA E. Kinetics and reaction pathways for propane dehydrogenation and aromatization on Co/H-ZSM5 and H-ZSM5[J]. J Phys Chem B,2002,106(18):4714−4720. doi: 10.1021/jp013245m
    [31]
    GAJARDO P, PIROTTE D, DEFOSSE C, GRANGE P, DELMON B. XPS study of the supported phase — SiO2 interaction in Mo/SiO2 and CoMo/SiO2 hydrodesulphurization catalysts in their oxidic precursor form[J]. J Electron Spectrosc,1979,17(2):121−135. doi: 10.1016/0368-2048(79)85033-1
    [32]
    MU S F, SHANG R J, ZHANG J L, CHEN J G. Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity[J]. J Fuel Chem Technol,2021,49(11):1592−1597. doi: 10.1016/S1872-5813(21)60163-9
    [33]
    TAN B J, KLABUNDE K J, SHERWOOD P M A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica[J]. J Am Chem Soc,1991,113(3):855−861. doi: 10.1021/ja00003a019
    [34]
    MOSELAGE M, JIE L, ACKERMANN L. Cobalt-catalyzed C−H activation[J]. ACS Catal,2015,6(2):498−525.
    [35]
    B H B, A G, M S N. Selective propane dehydrogenation with single-site Co-II on SiO2 by a non-redox mechanism[J]. J Catal,2015,322:24−37. doi: 10.1016/j.jcat.2014.10.018
    [36]
    YANRAO C, MAO T, ZHENG C, UNIVERSITY G. Microwave synthesis technique and properties of octadecylmethyldihydroxyethyl ammonium bromide[J]. CIESC J,2011,62(2):566−573.
    [37]
    SONG Y Q, FENG Y L, FENG L, KANG C L, ZHOU X L, XU L Y, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. J Mol Catal A: Chem,2009,310(1/2):130−137. doi: 10.1016/j.molcata.2009.06.006
    [38]
    STRA ‐EIFERT A, WAL L I, HERN NDEZ MEJ A C, WEBER L J, YOSHIDA H, ZEČEVIĆ J, JONG K P, G TTEL R. Bifunctional Co-based catalysts for fischer-tropsch synthesis: Descriptors affecting the product distribution[J]. ChemCatChem,2021,13(11):2726−2742. doi: 10.1002/cctc.202100270
    [39]
    S C, J X, R Y Y, D W J, P Z X, X Z K. Properties of ultramicroscopic beta zeolites synthesized from mesoporous molecular sieves as silica source and their hydrocracking performance[J]. J Catal,2006,27(003):255−258.
    [40]
    KHODAKOV A Y, BECHARA R, GRIBOVAL-CONSTANT A. Fischer-Tropsch synthesis over silica supported cobalt catalysts: Mesoporous structure versus cobalt surface density[J]. Appl Catal A: Gen,2003,254(2):273−288. doi: 10.1016/S0926-860X(03)00489-7
    [41]
    KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal,2002,206(2):230−241. doi: 10.1006/jcat.2001.3496
    [42]
    LI X, JIA R, LI P, ANG S. Response surface analysis for enzymatic decolorization of Congo red by manganese peroxidase[J]. J Mol Catal B: Enzym,2009,56(1):1−6. doi: 10.1016/j.molcatb.2008.03.013
    [43]
    HILL W J, HUNTER W G. A review of response surface methodology: A literature survey[J]. Technometrics,1966,8(4):571−590. doi: 10.2307/1266632
    [44]
    LONG Y F, TAN F X, YANG K D, GE L, LV X Y, WEN Y X. Response surface methodology to optimize the preparation of LiFePO-4/C by low-temperature carbon thermal reduction[J]. J Chem Eng High Schools,2013,(1):125−130.
    [45]
    JIANG S J, FENG X R, LI X E, JIANG S L. Optimized preparation and characterization of PAC-PDMDAAC hybrid flocculants by response surface methodology[J]. J Chem Eng,2014,(2):731−736.
    [46]
    M Z Z, L Z H. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology[J]. J Hazard Mater,2009,172(2/3):1388−1393. doi: 10.1016/j.jhazmat.2009.07.146
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (256) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return