Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
WANG Dan-dan, GU Xiao-yu, SHI Hao-nan, CHEN Ji-xiang. Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1341-1350. doi: 10.1016/S1872-5813(22)60029-X
Citation: WANG Dan-dan, GU Xiao-yu, SHI Hao-nan, CHEN Ji-xiang. Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1341-1350. doi: 10.1016/S1872-5813(22)60029-X

Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole

doi: 10.1016/S1872-5813(22)60029-X
Funds:  The project was supported by the National Natural Science Foundation of China (21576193 and 21176177).
More Information
  • Corresponding author: E-mail: jxchen@tju.edu.cn
  • Received Date: 2022-01-27
  • Accepted Date: 2022-04-17
  • Rev Recd Date: 2022-04-17
  • Available Online: 2022-05-12
  • Publish Date: 2022-10-31
  • Herein, SiO2 supported metallic Ni (Ni/SiO2) and bimetallic Ni-Zn (NixZn/SiO2) (x represents the Ni/Zn atomic ratio) catalysts were prepared by the incipient wetness impregnation method and their activities were tested in vapor phase hydrodeoxygenation (HDO) of anisole under 0.1 MPa. The characterization results show that Ni-Zn alloy forms in NixZn/SiO2 after reduction at 550 °C, and a suitable Ni/Zn atomic ratio (30) leads to smaller alloy particle size and consequently more H2 adsorption amount than others. In the HDO reaction, the formation of Ni-Zn alloy facilitates the direct deoxygenation pathway and suppresses CO methanation and C−C bond hydrogenolysis, which is ascribed to the isolation effect of the Ni atoms by the oxophilic Zn ones. Ni30Zn/SiO2 gives not only higher anisole conversion but also higher selectivity to benzene than Ni/SiO2. Therefore, the introduction of a suitable amount of oxophilic Zn in Ni/SiO2 promotes the HDO of anisole to benzene. Finally, we propose that the Ni30Zn/SiO2 deactivation is related to the oxidation of Ni-Zn alloy and carbon deposition on the catalyst surface.
  • loading
  • [1]
    CHHEDA J N, HUBER G W, DUMESIC J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angew Chem Int Ed Eng,2007,46(38):7164−7183. doi: 10.1002/anie.200604274
    [2]
    SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, BECKHAM G T, SELS B F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chem Soc Rev,2018,47(3):852−908. doi: 10.1039/C7CS00566K
    [3]
    LI X, CHEN G, LIU C, MA W, YAN B, ZHANG J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review[J]. Renew Sustainable Energy Rev,2017,71:296−308. doi: 10.1016/j.rser.2016.12.057
    [4]
    LIU C, WANG H, KARIM A M, SUN J, WANG Y. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chem Soc Rev,2014,43(22):7594−7623. doi: 10.1039/C3CS60414D
    [5]
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chem Rev,2006,106(9):4044−4098. doi: 10.1021/cr068360d
    [6]
    LASKAR D D, YANG B, WANG H, LEE J. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuels Bioprod Biorefin,2013,7(5):602−626. doi: 10.1002/bbb.1422
    [7]
    BJELIĆ A, GRILC M, LIKOZAR B. Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: Intrinsic microkinetics and transport phenomena[J]. Chem Eng J,2018,333:240−259. doi: 10.1016/j.cej.2017.09.135
    [8]
    LU M, DU H, WEI B, ZHU J, LI M, SHAN Y, SHEN J, SONG C. Hydrodeoxygenation of guaiacol on Ru catalysts: Influence of TiO2-ZrO2 composite oxide supports[J]. Ind Eng Chem Res,2017,56(42):12070−12079. doi: 10.1021/acs.iecr.7b02569
    [9]
    LEE C R, YOON J S, SUH Y-W, CHOI J-W, HA J-M, SUH D J, PARK Y-K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol[J]. Catal Commun,2012,17:54−58. doi: 10.1016/j.catcom.2011.10.011
    [10]
    HONG Y-K, LEE D-W, EOM H-J, LEE K-Y. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol[J]. Appl Catal B: Environ,2014,150−151:438−445.
    [11]
    LEE K, GU G H, MULLEN C A, BOATENG A A, VLACHOS D G. Guaiacol hydrodeoxygenation mechanism on Pt(111): Insights from density functional theory and linear free energy relations[J]. ChemSusChem,2015,8(2):315−322. doi: 10.1002/cssc.201402940
    [12]
    GRIFFIN M B, FERGUSON G A, RUDDY D A, BIDDY M J, BECKHAM G T, SCHAIDLE J A. Role of the support and reaction conditions on the vapor-phase deoxygenation of m-cresol over Pt/C and Pt/TiO2 catalysts[J]. ACS Catal,2016,6(4):2715−2727. doi: 10.1021/acscatal.5b02868
    [13]
    ZHAO N, ZHENG Y, CHEN J. Remarkably reducing carbon loss and H2 consumption on Ni-Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons[J]. J Energy Chem,2020,41:194−208. doi: 10.1016/j.jechem.2019.05.019
    [14]
    JIN S, XIAO Z, LI C, CHEN X, WANG L, XING J, LI W, LIANG C. Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts[J]. Catal Today,2014,234:125−132. doi: 10.1016/j.cattod.2014.02.014
    [15]
    CHEN J, SHI H, LI L, LI K. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B: Environ,2014,144:870−884. doi: 10.1016/j.apcatb.2013.08.026
    [16]
    NIE L, DE SOUZA P M, NORONHA F B, AN W, SOOKNOI T, RESASCO D E. Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts [J]. J Mol Catal A: Chem, 2014, 388389: 47–55.
    [17]
    YANG F, LIU D, WANG H, LIU X, HAN J, GE Q, ZHU X. Geometric and electronic effects of bimetallic Ni-Re catalysts for selective deoxygenation of m-cresol to toluene[J]. J Catal,2017,349:84−97. doi: 10.1016/j.jcat.2017.01.001
    [18]
    ZHENG Y, ZHAO N, CHEN J. Enhanced direct deoxygenation of anisole to benzene on SiO2-supported Ni-Ga alloy and intermetallic compound[J]. Appl Catal B: Environ,2019,250:280−291. doi: 10.1016/j.apcatb.2019.02.073
    [19]
    SUN J, KARIM A M, ZHANG H, KOVARIK L, LI X S, HENSLEY A J, MCEWEN J-S, WANG Y. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. J Catal,2013,306:47−57. doi: 10.1016/j.jcat.2013.05.020
    [20]
    PARK C W, KIM J W, KIM H U, PARK Y K, LAM S S, HA J M, JAE J. Bimetallic Ni-Re catalysts for the efficient hydrodeoxygenation of biomass‐derived phenols[J]. Int J Energy Res,2021,45(11):16349−16361. doi: 10.1002/er.6882
    [21]
    HAN Y, AI L, SHI Y, CHEN J. Efficient direct deoxygenation of bio-oil model compound (anisole) on highly dispersed SiO2-supported Ni3Ga intermetallic compound prepared by direct impregnation-reduction method[J]. J Energy Inst,2021,98:20−28. doi: 10.1016/j.joei.2021.05.005
    [22]
    GUPTA S, KHAN T S, SAHA B, HAIDER M A. Synergistic effect of Zn in a bimetallic PdZn catalyst: Elucidating the role of undercoordinated sites in the hydrodeoxygenation reactions of biorenewable platforms[J]. Ind Eng Chem Res,2019,58(35):16153−16163. doi: 10.1021/acs.iecr.9b00577
    [23]
    SHI D, ARROYO-RAMÍREZ L, VOHS J M. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates: Reaction of anisole on Pt and PtZn catalysts[J]. J Catal,2016,340:219−226. doi: 10.1016/j.jcat.2016.05.020
    [24]
    LI X, ZHANG C, CHENG H, HE L, LIN W, YU Y, ZHAO F. Effect of Zn doping on the hydrogenolysis of glycerol over ZnNiAl catalyst[J]. J Mol Catal A: Chem,2014,395:1−6. doi: 10.1016/j.molcata.2014.07.021
    [25]
    PAN Z, WANG R, CHEN J. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn[J]. Appl Catal B: Environ,2018,224:88−100. doi: 10.1016/j.apcatb.2017.10.040
    [26]
    BARROSO M N, GOMEZ M F, ARRúA L A, ABELLO M C. Hydrogen production by ethanol reforming over NiZnAl catalysts[J]. Appl Catal A: Gen,2006,304:116−123. doi: 10.1016/j.apcata.2006.02.033
    [27]
    LI K, WANG R, CHEN J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels,2011,25(3):854−863. doi: 10.1021/ef101258j
    [28]
    ZHAO L, MU X, LIU T, FANG K. Bimetallic Ni-Co catalysts supported on Mn-Al oxide for selective catalytic CO hydrogenation to higher alcohols[J]. Catal Sci Technol,2018,8(8):2066−2076. doi: 10.1039/C7CY02555F
    [29]
    KONG X, ZHU Y, ZHENG H, ZHU Y, FANG Z. Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2, 5-dimethylfuran from bioderived 5-hydroxymethylfurfural[J]. ACS Sustainable Chem Eng,2017,5(12):11280−11289. doi: 10.1021/acssuschemeng.7b01813
    [30]
    WANG H, MALE J, WANG Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal,2013,3(5):1047−1070. doi: 10.1021/cs400069z
    [31]
    RUNNEBAUM R C, LOBO-LAPIDUS R J, NIMMANWUDIPONG T, BLOCK D E, GATES B C. Conversion of anisole catalyzed by platinum supported on alumina: The reaction network[J]. Energy Fuels,2011,25(10):4776−4785. doi: 10.1021/ef2010699
    [32]
    YU X, CHEN J, REN T. Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons[J]. RSC Adv,2014,4(87):46427−46436. doi: 10.1039/C4RA07932A
    [33]
    HIBBITTS D D, FLAHERTY D W, IGLESIA E. Role of branching on the rate and mechanism of C–C cleavage in alkanes on metal surfaces[J]. ACS Catal,2015,6(1):469−482.
    [34]
    RODRIGUEZ J A, KUHN M. Interaction of zinc with transition-metal surfaces:   Electronic and chemical perturbations induced by bimetallic bonding[J]. J Phys Chem,1996,100(1):381−389. doi: 10.1021/jp952249m
    [35]
    ZHOU G, BARRIO L, AGNOLI S, SENANAYAKE S D, EVANS J, KUBACKA A, ESTRELLA M, HANSON J C, MARTINEZ-ARIAS A, FERNANDEZ-GARCIA M, RODRIGUEZ J A. High activity of Ce1−xNixO2−y for H2 production through ethanol steam reforming: Tuning catalytic performance through metal-oxide interactions[J]. Angew Chem Int Ed Eng,2010,49(50):9680−9684. doi: 10.1002/anie.201004966
    [36]
    GAN L-Y, TIAN R-Y, YANG X-B, LU H-D, ZHAO Y-J. Catalytic reactivity of CuNi alloys toward H2O and CO dissociation for an efficient water-gas shift: A DFT study[J]. J Phys Chem C,2011,116(1):745−752.
    [37]
    SAIDI M, ROSTAMI P, RAHIMPOUR H R, ROSHANFEKR FALLAH M A, RAHIMPOUR M R, GATES B C, RAEISSI S. Kinetics of upgrading of anisole with hydrogen catalyzed by platinum supported on alumina[J]. Energy Fuels,2015,29(8):4990−4997. doi: 10.1021/acs.energyfuels.5b00297
    [38]
    SAIDI M, MORADI P. Catalytic hydrotreatment of lignin-derived pyrolysis bio‐oils using Cu/γ-Al2O3 catalyst: Reaction network development and kinetic study of anisole upgrading[J]. Int J Energy Res,2021,45(6):8267−8284. doi: 10.1002/er.6642
    [39]
    PARSELL T H, OWEN B C, KLEIN I, JARRELL T M, MARCUM C L, HAUPERT L J, AMUNDSON L M, KENTTäMAA H I, RIBEIRO F, MILLER J T, ABU-OMAR M M. Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis[J]. Chem Sci,2013,4(2):806−813. doi: 10.1039/C2SC21657D
    [40]
    SAHA B, BOHN C M, ABU-OMAR M M. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2, 5-dimethylfuran[J]. ChemSusChem,2014,7(11):3095−3101. doi: 10.1002/cssc.201402530
    [41]
    FRIEDRICH M, TESCHNER D, KNOP-GERICKE A, ARMBRüSTER M. Surface and subsurface dynamics of the intermetallic compound ZnNi in methanol steam reforming[J]. J Phys Chem C,2012,116(28):14930−14935. doi: 10.1021/jp303174h
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (423) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return