Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Lin-na, ZHANG Juan, WANG Guo-fu, ZHAO Wen-tao, CHEN Jian-gang. Oxidation treatment of carbon aerogels supports to modulate Ru/CA catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1331-1340. doi: 10.1016/S1872-5813(22)60031-8
Citation: ZHANG Lin-na, ZHANG Juan, WANG Guo-fu, ZHAO Wen-tao, CHEN Jian-gang. Oxidation treatment of carbon aerogels supports to modulate Ru/CA catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1331-1340. doi: 10.1016/S1872-5813(22)60031-8

Oxidation treatment of carbon aerogels supports to modulate Ru/CA catalysts for Fischer-Tropsch synthesis

doi: 10.1016/S1872-5813(22)60031-8
Funds:  The project was supported by the National Natural Science Foundation of China (22072175),the Chinese Academy of Sciences Strategic Pilot Science and Technology Special (Class A) (XDA03040200) and Beijing Sanju Environmental Protection & New Materials Co., Ltd (SJHT-18038).
More Information
  • Corresponding author: Tel/Fax: 86-0351-4064128, E-mail: chenjg@sxicc.ac.cn
  • Received Date: 2022-01-26
  • Rev Recd Date: 2022-04-02
  • Available Online: 2022-05-19
  • Publish Date: 2022-10-31
  • Oxidation treated carbon materials for exploiting highly efficient and stable loaded catalysts have been proven to be valid. In this work, the surfaces of carbon aerogels (CA) were functionalized with different oxidizing agents, i.e., H2O2 and HNO3. A series of Ru-supported catalysts on carbon aerogels (CA) with/without functionalized were prepared by the impregnation strategy. The impact of oxidation treatment on the texture features of carbon aerogels, the types and contents of formed surface oxygen-containing functional groups, the metal-support interactions and the Fischer-Tropsch synthesis reaction performances of the catalysts were systematically investigated. Our results showed that Ru/CA catalyst without oxidation treatment displayed the highest initial activity but the poor stability, while the Ru/CA-H2O2 catalyst exhibited excellent activity and C5+ selectivity. The oxidation treatment increased the carbon aerogels defects, thereby broadening the specific surface area. The increased content of oxygen-containing functional groups on the surface enhanced the interaction between the support and Ru nanoparticles and improved the stability of the catalyst. Nevertheless, the excessive oxygen-containing functional groups on the surface decreased the activity and the C5+ selectivity of carbon aerogels-loaded Ru catalysts.
  • loading
  • [1]
    ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030−1058.
    [2]
    LI J, HE Y, TAN L, ZHANG P, PENG X, ORUGANTI A, YANG G, ABE H, WANG Y, TSUBAKI N. Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology[J]. Nat Catal,2018,1(10):787−793.
    [3]
    ZHANG Y, YANG X, YANG X, DUAN H, QI H, SU Y, LIANG B, TAO H, LIU B, CHEN D, SU X, HUANG Y, ZHANG T. Tuning reactivity of Fischer-Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts[J]. Nat Commun,2020,11(1):3185.
    [4]
    DUNN B C, COLE P, COVINGTON D, WEBSTER M C, PUGMIRE R J, ERNST R D, EYRING E M, SHAH NHUFFMAN G P. Silica aerogel supported catalysts for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2005,278(2):233−238.
    [5]
    BAHOME M C, JEWELL L L, HILDEBRANDT D, GLASSER DCOVILLE N J. Fischer-Tropsch synthesis over iron catalysts supported on carbon nanotubes[J]. Appl Catal A: Gen,2005,287(1):60−67.
    [6]
    CARBALLO J M G, YANG J, HOLMEN A, GARCÍA-RODRÍGUEZ S, ROJAS S, OJEDA M, FIERRO J L G. Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis[J]. J Catal,2011,284(1):102−108.
    [7]
    GONZALO-CHACÓN L, ALMOHALLA M, GALLEGOS-SUAREZ E, GUERRERO-RUIZ A, RODRÍGUEZ-RAMOS I. Effects of the reduction temperature over ex-chloride Ru Fischer-Tropsch catalysts supported on high surface area graphite and promoted by potassium[J]. Appl Catal A: Gen,2014,480:86−92.
    [8]
    ESLAVA J L, SUN X, GASCON J, KAPTEIJN F, GUEZ-RAMOS I. Ruthenium particle size and cesium promotion effects in Fischer-Tropsch synthesis over high-surface-area graphite supported catalysts[J]. Catal Sci Technol,2017,7(5):1235−1244.
    [9]
    CAI Q, LI J. Catalytic properties of the Ru promoted Co/SBA-15 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun,2008,9(10):2003−2006.
    [10]
    ESLAVA J L, IGLESIAS-JUEZ A, AGOSTINI G, FERN N, DEZ-GARCÍA M, GUERRERO-RUIZ A, RODRÍGUEZ-RAMOS I. Time-resolved XAS investigation of the local environment and evolution of oxidation states of a Fischer-Tropsch Ru-Cs/C catalyst[J]. ACS Catal,2016,6(3):1437−1445.
    [11]
    LIUZZI D, REZ-ALONSO F J, ROJAS S. Ru-M (M=Fe or Co) catalysts with high Ru surface concentration for Fischer-Tropsch synthesis[J]. Fuel, 2021, 293.
    [12]
    BEPARI S, LI X, ABROKWAH R, MOHAMMAD N, ARSLAN M, KUILA D. Co-Ru catalysts with different composite oxide supports for Fischer-Tropsch studies in 3d-printed stainless steel microreactors[J]. Appl Catal A: Gen, 2020, 608: 117838.
    [13]
    ZHANG Q, YU J, CORMA A. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities[J]. Adv Mater,2020,32(44):e2002927.
    [14]
    SONAL, PANT K, KUPADHYAYULA S. An insight into the promotional effect on Fe-Co bimetallic catalyst in the Fischer Tropsch reaction: A drifts study[J]. Fuel,2020,276:118044.
    [15]
    WAN H-J, WU B-S, ZHANG C-H, XIANG H-W, LI Y-W, XU B-F, YI F. Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis[J]. Catal Commun,2007,8(10):1538−1545.
    [16]
    GERBER I C, SERP P. A theory/experience description of support effects in carbon-supported catalysts[J]. Chem Rev,2020,120(2):1250−1349.
    [17]
    LU Z, CHEN G, SIAHROSTAMI S, CHEN Z, LIU K, XIE J, LIAO L, WU T, LIN D, LIU Y, JARAMILLO T F, NØRSKOV J, KCUI Y. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nat Catal,2018,1(2):156−162.
    [18]
    MALEKI H, HÜSING N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects[J]. Appl Catal B: Environ,2018,221:530−555.
    [19]
    WU M, HOU X, QUAN Y, ZHAO J, REN J. Catalytic hydrogenation of methyl acetate to ethanol over boron doped carbon aerogels supported Cu catalyst[J]. ChemistrySelect,2020,5(37):11517−11521.
    [20]
    YU S, SONG S, LI R, FANG B. The lightest solid meets the lightest gas: An overview of carbon aerogels and their composites for hydrogen related applications[J]. Nanoscale,2020,12(38):19536−19556.
    [21]
    ZHANG Y, SU X, LI L, QI H, YANG C, LIU W, PAN X, LIU X, YANG X, HUANG Y, ZHANG T. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer-Tropsch synthesis[J]. ACS Catal,2020,10(21):12967−12975.
    [22]
    LIU Z, YANG X, HU G, FENG L. Ru nanoclusters coupled on Co/N-doped carbon nanotubes efficiently catalyzed the hydrogen evolution reaction[J]. ACS Sustainable Chem Eng,2008,8(24):9136−9144.
    [23]
    GUO Y, MEI S, YUAN K, WANG D-J, LIU H-C, YAN C-H, ZHANG Y-W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and h-spillover effect[J]. ACS Catal,2018,8(7):6203−6215.
    [24]
    ZANUTELO C, LANDERS R, CARVALHO W A, COBO A J G. Carbon support treatment effect on Ru/C catalyst performance for benzene partial hydrogenation[J]. Appl Catal A: Gen,2011,409−410:174−180.
    [25]
    CHEN J, CHEN Q, MA Q. Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes[J]. J Colloid Interf Sci,2012,370(1):32−38.
    [26]
    TANG T, YIN C, XIAO N, GUO M, XIAO F-S. High activity in catalytic oxidation of benzyl alcohol with molecular oxygen over carboxylic-functionalized carbon nanofiber-supported ruthenium catalysts[J]. Catal Lett,2008,127(3/4):400−405.
    [27]
    PENDYALA V R R, JACOBS G, GRAHAM U M, SHAFER W D, MARTINELLI M, KONG L, DAVIS B H. Fischer-Tropsch synthesis: Influence of acid treatment and preparation method on carbon nanotube supported ruthenium catalysts[J]. Ind Eng Chem Res,2017,56(22):6408−6418.
    [28]
    KUMI D O, DLAMINI M W, PHAAHLAMOHLAKA T N, MHLANGA S D, COVILLE N J, SCURRELL M S. Selective CO methanation over Ru supported on carbon spheres: The effect of carbon functionalization on the reverse water gas shift reaction[J]. Catal Lett,2018,148(11):3502−3513.
    [29]
    LI Y, LU W, ZHAO Z, ZHAO M, LYU Y, GONG L, ZHU H, DING Y. Tuning surface oxygen group concentration of carbon supports to promote Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2021,613:118017.
    [30]
    JAMATIA R, GUPTA A, PAL A K. Ru-Ferrite-decorated graphene (RuFG): A sustainable and efficient catalyst for conversion of aromatic aldehydes and nitriles to primary amides in aqueous medium[J]. ACS Sustainable Chem Eng,2017,5(9):7604−7612.
    [31]
    LIN Z, LIU S, LIU Y, LIU Z, ZHANG S, ZHANG X, TIAN Y, TANG Z. Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting[J]. J Power Sources,2021,514:230600.
    [32]
    WAN H-J, WU B-S, TAO Z-C, LI T-Z, AN X, XIANG H-W, LI Y-W. Study of an iron-based Fischer-Tropsch synthesis catalyst incorporated with SiO2[J]. J Mol Catal A: Chem,2006,260(1/2):255−263.
    [33]
    HOU W, WU B, YANG Y, HAO Q, TIAN L, XIANG H, LI Y. Effect of SiO2 content on iron-based catalysts for slurry Fischer-Tropsch synthesis[J]. Fuel Process Technol,2008,89(3):284−291.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return