Volume 51 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
YANG Yi-long, LI Shan-ying, MAO Yan-li, DANG Li-yun, JIAO Zhuo-fan, XU Kai-dong. Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 205-214. doi: 10.1016/S1872-5813(22)60036-7
Citation: YANG Yi-long, LI Shan-ying, MAO Yan-li, DANG Li-yun, JIAO Zhuo-fan, XU Kai-dong. Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 205-214. doi: 10.1016/S1872-5813(22)60036-7

Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution

doi: 10.1016/S1872-5813(22)60036-7
Funds:  The project was supported by Natural Science Youth Foundation of Henan Province (202300410032), Key Scientific Research Projects of Colleges and Universities of Henan Provincial Department of Education (21A150010), Foundation for University Key Teacher by the Henan University of Urban Construction (YCJQNGGJS202109).
More Information
  • Corresponding author: E-mail: ylyang@hncj.edu.com30010908@hncj.edu.cn
  • Received Date: 2022-04-06
  • Accepted Date: 2022-05-06
  • Rev Recd Date: 2022-05-06
  • Available Online: 2022-06-14
  • Publish Date: 2023-01-18
  • In this work we report the feasible modification of graphitic carbon nitride (g-C3N4) polymer through a post-functionalization progress. The resultant photocatalyst exhibits boron doping and mesoporous structure with a high surface area of 125 m2/g, leading in an increased surface activity for photocatalytic water splitting reaction. X-ray diffraction, X-ray photoelectron spectroscopy, PL emission spectra and UV-Vis spectra were used to detect the properties of as-prepared samples. Based on X-ray photoelectron spectroscopy analysis, boron is proposed to dope in the g-C3N4 lattice. Optical studies indicated that boron doped g-C3N4 exhibits enhanced and extended light absorbance in the visible-light region and a much lower intensity of PL emission spectra compared to pure g-C3N4. As a result, boron doped g-C3N4 shows activity of 10.2 times higher than the pristine g-C3N4 for photocatalytic hydrogen evolution. This work may provide a way to design efficient and mesoporous photocatalysts through post modification.
  • loading
  • [1]
    GIELEN D, BOSHELL F, SAYGIN D. Climate and energy challenges for materials science[J]. Nat Mater,2016,15:117−120. doi: 10.1038/nmat4545
    [2]
    FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37−38. doi: 10.1038/238037a0
    [3]
    CHEN F, MA T, ZHANG T, ZHANG Y, HUANG H. Atomic-level charge separation strategies in semiconductor-based photocatalysts[J]. Adv Mater,2021,23(10):2005256.
    [4]
    YANG Y, WANG S, LI Y, WANG J, WANG L. Strategies for efficient solar water splitting using carbon nitride[J]. Chem Asian J,2017,12:1421−1434. doi: 10.1002/asia.201700540
    [5]
    WANG X, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater,2009,8:76−80. doi: 10.1038/nmat2317
    [6]
    XING Y, WANG X, HAO S, ZHANG X, WANG X, MA W, ZHAO G, XU X. Recent advances in the improvement of g-C3N4 based photocatalytic materials[J]. Chin Chem Lett,2021,32(1):13−20. doi: 10.1016/j.cclet.2020.11.011
    [7]
    HAN C, SU P, TAN B, MA X, LV H, HUANG C, WANG P, TONG Z, LI G, HUANG Y, LIU Z. Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity[J]. J Colloid Interfaces Sci,2021,581:159−166. doi: 10.1016/j.jcis.2020.07.119
    [8]
    LI J, LIU X, CHE H, LIU C, LI C. Facile construction of O-doped crystalline/non-crystalline g-C3N4 embedded nano-homojunction for efficiently photocatalytic H2 evolution[J]. Carbon,2021,172:602−612. doi: 10.1016/j.carbon.2020.10.051
    [9]
    ZHU B, CHENG B, FAN J, HO W, YU J. g-C3N4-based 2D/2D composite heterojunction photocatalyst[J]. Small,2021,2:2100086. doi: 10.1002/sstr.202100086
    [10]
    YU X, NG S-F, PUTRI L K, TAN L-L, MOHAMED A R, ONG W-J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis[J]. Small,2021,17:2006851. doi: 10.1002/smll.202006851
    [11]
    ZHANG H, FENG L, LI C, WANG L. Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light[J]. J Fuel Chem Technol,2018,46(7):871−878. doi: 10.1016/S1872-5813(18)30036-7
    [12]
    YUAN J, YI X, TANG Y, LIU C, LUO S. Efficient photocatalytic hydrogen evolution and CO2 reduction: enhanced light absorption, charge separation, and hydrophilicity by tailoring terminal and linker units in g-C3N4[J]. ACS Appl Mater Interfaces,2020,12:17,19607−19615.
    [13]
    CAMUSSI I, MANNUCCI B, SPELTINI A, PROFUMO A, MILANESE C, MALAVASI L, QUADRELLI P. g-C3N4-singlet oxygen made easy for organic synthesis: scope and limitations[J]. ACS Sustainable Chem Eng,2019,7:9,8176−8182.
    [14]
    TRUONG H B, BAE S, CHO J, HUR J. Advances in application of g-C3N4-based materials for treatment of polluted water and wastewater via activation of oxidants and photoelectrocatalysis: A comprehensive review[J]. Chemosphere,2022,286:131737. doi: 10.1016/j.chemosphere.2021.131737
    [15]
    PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: A review[J]. Carbon,2021,172:682−711. doi: 10.1016/j.carbon.2020.10.073
    [16]
    WANG H, ZHANG X, XIE J, ZHANG J, MA P, PAN B, XIE Y. Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity[J]. Nanoscale,2015,7:5152−5156. doi: 10.1039/C4NR07645A
    [17]
    SHEVLIN S A, GUO Z X. Anionic dopants for improved optical absorption and enhanced photocatalytic hydrogen production in graphitic carbon nitride[J]. Chem Mater,2016,28:7250−7256. doi: 10.1021/acs.chemmater.6b02002
    [18]
    YE H, WANG Z, YU F, ZHANG S, KONG K, GONG X, HUA J, TIAN H. Fluorinated conjugated poly(benzotriazole)/g-C3N4 heterojunctions for significantly enhancing photocatalytic H2 evolution[J]. Appl Catal B: Environ,2020,267:118577. doi: 10.1016/j.apcatb.2019.118577
    [19]
    IQBAL W, YANG B, ZHAO X, RAUF M, MOHAMED I M A, ZHANG J, MAO Y. Facile one-pot synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance[J]. Catal Sci Technol,2020,10:549−559. doi: 10.1039/C9CY02111F
    [20]
    WANG Y, ZHAO S, ZHANG Y, FANG J, ZHOU Y, YUAN S, ZHANG C, CHEN W. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation[J]. Appl Surf Sci,2018,440:258−265. doi: 10.1016/j.apsusc.2018.01.091
    [21]
    SHI Y K, HU X J, CHEN L, LU Y, ZHU B L, ZHANG S M, HUANG W P. Boron modified TiO2 nanotubes supported Rh-nanoparticle catalysts for highly efficient hydroformylation of styrene[J]. New J Chem,2017,41:6120−6126. doi: 10.1039/C7NJ01050H
    [22]
    CHEN F, WU C, ZHENG G, QU L, HAN Q. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects[J]. Chin J Catal,2022,43:1216−1229. doi: 10.1016/S1872-2067(21)63985-2
    [23]
    ZHANG J, ZHANG G, CHEN X, LIN S, MÇHLMANN L, DOŁEGA G, LIPNER G, ANTONIETTI M, BLECHERT S, WANG X. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light[J]. Angew Chem Int Ed,2012,51:3183−3187. doi: 10.1002/anie.201106656
    [24]
    SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem,1985,57:603−619. doi: 10.1351/pac198557040603
    [25]
    YU H, SHI R, ZHAO Y, BIAN T, ZHAO Y, ZHOU C, WATERHOUSE G I N, WU L Z, TUNG C-H, ZHANG T. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Adv Mater,2017,29:1605148. doi: 10.1002/adma.201605148
    [26]
    WANG Y, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew Chem Int Ed,2012,51:68−69. doi: 10.1002/anie.201101182
    [27]
    LIN Z, WANG X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angew Chem Int Ed,2013,52:1735−1738. doi: 10.1002/anie.201209017
    [28]
    WU X, CHEN F, WANG X, YU H. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance[J]. Appl Surf Sci,2018,427:645−653. doi: 10.1016/j.apsusc.2017.08.050
    [29]
    LAU V W-H, MESCH M B, DUPPEL V, BLUM V, SENKER J, LOTSCH B V. Low-molecular-weight carbon nitrides for solar hydrogen evolution[J]. J Am Chem Soc,2015,137:1064−1072. doi: 10.1021/ja511802c
    [30]
    WANG Y, LI H R, YAO J, WANG X C, Antonietti M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation[J]. Chem Sci,2011,2:446−450. doi: 10.1039/C0SC00475H
    [31]
    MIRAND C, MANSILLA H, Y´ANEZ J, OBREGON S, COLONA G. Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method[J]. J Photochem Photobiol A,2013,253:16−21. doi: 10.1016/j.jphotochem.2012.12.014
    [32]
    CHAI B, PENG T, MAO J, LI K, ZAN L. Graphitic carbon nitride (gC3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Phys Chem Chem Phys,2012,14:16745−16752. doi: 10.1039/c2cp42484c
    [33]
    THAWEESAK S, WANG S, LYU M, XIAO M, PEERAKIATKHAJOHN P, WANG L. Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting[J]. Dalton Trans,2017,46:10714−10720. doi: 10.1039/C7DT00933J
    [34]
    WANG X, LIU B, XIAO X, WANG S, HUANG W. Boron dopant simultaneously achieving nanostructure control and electronic structure tuning of graphitic carbon nitride with enhanced photocatalytic activity[J]. J Mater Chem C,2021,9:14876−14884. doi: 10.1039/D1TC04142H
    [35]
    CHEN P, XING P, CHEN Z, LIN H, HE Y. Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution[J]. Inter J Hydrogen Energy,2018,43:19984−19989. doi: 10.1016/j.ijhydene.2018.09.078
    [36]
    LUO Y, WANG J, YU S, CAO Y, MA K, PU Y, ZOU W, TANG C. Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation[J]. J Mater Res,2018,33:1268−1278. doi: 10.1557/jmr.2017.472
    [37]
    MARTHA S, NASHIM A, PARIDA K M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light[J]. J Mater Chem A,2013,1:7816−7824. doi: 10.1039/c3ta10851a
    [38]
    ONG W J, TAN L L, CHAI S P, YONG S T, MOHAMED A R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane[J]. Nano Energy,2015,13:757−770. doi: 10.1016/j.nanoen.2015.03.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (214) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return