YANG Yi-long, LI Shan-ying, MAO Yan-li, DANG Li-yun, JIAO Zhuo-fan, XU Kai-dong. Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 205-214. DOI: 10.1016/S1872-5813(22)60036-7
Citation: YANG Yi-long, LI Shan-ying, MAO Yan-li, DANG Li-yun, JIAO Zhuo-fan, XU Kai-dong. Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 205-214. DOI: 10.1016/S1872-5813(22)60036-7

Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution

  • In this work we report the feasible modification of graphitic carbon nitride (g-C3N4) polymer through a post-functionalization progress. The resultant photocatalyst exhibits boron doping and mesoporous structure with a high surface area of 125 m2/g, leading in an increased surface activity for photocatalytic water splitting reaction. X-ray diffraction, X-ray photoelectron spectroscopy, PL emission spectra and UV-Vis spectra were used to detect the properties of as-prepared samples. Based on X-ray photoelectron spectroscopy analysis, boron is proposed to dope in the g-C3N4 lattice. Optical studies indicated that boron doped g-C3N4 exhibits enhanced and extended light absorbance in the visible-light region and a much lower intensity of PL emission spectra compared to pure g-C3N4. As a result, boron doped g-C3N4 shows activity of 10.2 times higher than the pristine g-C3N4 for photocatalytic hydrogen evolution. This work may provide a way to design efficient and mesoporous photocatalysts through post modification.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return