Volume 50 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Jian-yuan, XING Shuang-feng, ZHAO Shi-chao, XIONG Mi, ZHANG Bian-qin, TONG Xi-li, QIN Yong, GAO Zhe. Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1270-1277. doi: 10.1016/S1872-5813(22)60040-9
Citation: ZHANG Jian-yuan, XING Shuang-feng, ZHAO Shi-chao, XIONG Mi, ZHANG Bian-qin, TONG Xi-li, QIN Yong, GAO Zhe. Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1270-1277. doi: 10.1016/S1872-5813(22)60040-9

Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation

doi: 10.1016/S1872-5813(22)60040-9
Funds:  The project was supported by the National Key R&D Program of China (2020YFA0210902 and 2017YFA0700101), National Natural Science Foundation of China (U1932131 and U1832208), National Science Fund for Distinguished Young Scholars (21825204), and Youth Innovation Promotion Association of the Chinese Academy of Sciences (2018208).
More Information
  • Corresponding author: E-mail: gaozhe@sxicc.ac.cn
  • Received Date: 2022-03-04
  • Accepted Date: 2022-03-25
  • Rev Recd Date: 2022-03-25
  • Available Online: 2022-06-22
  • Publish Date: 2022-10-31
  • Direct methanol fuel cell (DMFC) is a potential commercial fuel cell technology that is presently hindered by the expensive noble metal materials of the anode. Developing a method to obtain a uniformly dispersed metal phosphide catalyst with narrow size distribution is still a challenge. In this work, cobalt oxide was deposited on carbon cloth (CC) through atomic layer deposition (ALD), then cobalt phosphide was obtained after the phosphorization process. By changing the number of ALD-based ozone pulses (ALD-O3) for CC, the nucleation and growth modes of cobalt oxide (ALD-CoOx) on the CC were regulated, and CoPx nanoparticles with small particle size and uniform distribution were obtained. The optimized CoPx-based catalyst with 40 cycles of ALD-O3 treatment (CoPx/40-CC) exhibits excellent activity (153 mA/cm2) toward methanol electrocatalytic oxidation reaction in the alkaline solution, which is higher than the catalyst prepared by impregnation (Imp-CoPx/CC), although the CoPx loading of CoPx/40-CC is lower than that of Imp-CoPx/CC. The results indicate that the enhanced activity benefits from the small particle size and the uniform CoPx distribution, which promote the electron-transfer and mass transport kinetics of the methanol electro-oxidation process.
  • loading
  • [1]
    DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature,2012,486(7401):43−51. doi: 10.1038/nature11115
    [2]
    KAKATI N, MAITI J, LEE S H, JEE S H, VISWANATHAN B, YOON Y S. Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt-Ru?[J]. Chem Rev,2014,114(24):12397−12429. doi: 10.1021/cr400389f
    [3]
    LI M, DUANMU K, WAN C, CHENG T, ZHANG L, DAI S, CHEN W, ZHAO Z, LI P, FEI H, ZHU Y, YU R, LUO J, ZANG K, LIN Z, DING M, HUANG J, SUN H, GUO J, PAN X, GODDARD W A, SAUTET P, HUANG Y, DUAN X. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nat Catal,2019,2(6):495−503. doi: 10.1038/s41929-019-0279-6
    [4]
    LI H H, ZHAO S, GONG M, CUI C H, HE D, LIANG H W, WU L, YU S H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation[J]. Angew Chem Int Ed,2013,52(29):7472−7476. doi: 10.1002/anie.201302090
    [5]
    HUANG H, YANG S, VAJTAI R, WANG X, AJAYAN P M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts[J]. Adv Mater,2014,26(30):5160−5165. doi: 10.1002/adma.201401877
    [6]
    CHEN Q, YANG Y, CAO Z, KUANG Q, DU G, JIANG Y, XIE Z, ZHENG L. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity[J]. Angew Chem Int Ed,2016,55(31):9021−9025. doi: 10.1002/anie.201602592
    [7]
    XUE S, DENG W, YANG F, YANG J, AMIINU I S, HE D, TANG H, MU S. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation[J]. ACS Catal,2018,8(8):7578−7584. doi: 10.1021/acscatal.8b00366
    [8]
    ZHAO X, YIN M, MA L, LIANG L, LIU C, LIAO J, LU T, XING W. Recent advances in catalysts for direct methanol fuel cells[J]. Energy Environ Sci,2011,4(8):2736−2753. doi: 10.1039/c1ee01307f
    [9]
    ZHAI M, CHEN F, WU N, GUO R, ZHANG X, HU T, MA M. Porous layered cobalt nanocrystal/nitrogen-doped carbon composites as efficient and CO-resistant electrocatalysts for methanol oxidation reaction[J]. Appl Surf Sci,2021,545:149016. doi: 10.1016/j.apsusc.2021.149016
    [10]
    YANG W, YANG X, JIA J, HOU C, GAO H, MAO Y, WANG C, LIN J, LUO X. Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation[J]. Appl Catal B: Environ,2019,244:1096−1102. doi: 10.1016/j.apcatb.2018.12.038
    [11]
    CUI X, GUO W, ZHOU M, YANG Y, LI Y, XIAO P, ZHANG Y, ZHANG X. Promoting effect of Co in NimCon (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction[J]. ACS Appl Mater Inter,2015,7(1):493−503. doi: 10.1021/am506554b
    [12]
    PEI Y, CHENG Y, CHEN J, SMITH W, DONG P, AJAYAN P M, YE M, SHEN J. Recent developments of transition metal phosphides as catalysts in the energy conversion field[J]. J Mater Chem A,2018,6(46):23220−23243. doi: 10.1039/C8TA09454C
    [13]
    SHI Y, ZHANG B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chem Soc Rev,2016,45(6):1529−1541. doi: 10.1039/C5CS00434A
    [14]
    WALCARIUS A. Mesoporous materials and electrochemistry[J]. Chem Soc Rev,2013,42(9):4098−4140. doi: 10.1039/c2cs35322a
    [15]
    TONG X, QIN Y, GUO X, MOUTANABBIR O, AO X, PIPPEL E, ZHANG L, KNEZ M. Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles-carbon nanotube hybrid materials[J]. Small,2012,8(22):3390−3395. doi: 10.1002/smll.201200839
    [16]
    HUANG L, ZHANG X, WANG Q, HAN Y, FANG Y, DONG S. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. J Am Chem Soc,2018,140(3):1142−1147. doi: 10.1021/jacs.7b12353
    [17]
    TANG C, ZHANG R, LU W, HE L, JIANG X, ASIRI A M, SUN X. Fe-Doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation[J]. Adv Mater,2017,29(2):1602441. doi: 10.1002/adma.201602441
    [18]
    LIU D, LU W, WANG K, DU G, ASIRI A M, LU Q, SUN X. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation[J]. Nanotechnology,2016,27(44):44LT02. doi: 10.1088/0957-4484/27/44/44LT02
    [19]
    CHEN S, YANG X, TONG X, ZHANG F, ZOU H, QIAO Y, DONG M, WANG J, FAN W. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl Mater Inter,2020,12(31):34971−34979. doi: 10.1021/acsami.0c08912
    [20]
    GAO Z, WANG G, LEI T, LV Z, XIONG M, WANG L, XING S, MA J, JIANG Z, QIN Y. Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts[J]. Nat Commun,2022,13(1):118. doi: 10.1038/s41467-021-27785-5
    [21]
    GAO Z, DONG M, WANG G, SHENG P, WU Z, YANG H, ZHANG B, WANG G, WANG J, QIN Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions[J]. Angew Chem Int Ed,2015,54(31):9006−9010. doi: 10.1002/anie.201503749
    [22]
    ZHANG J, GAO Z, WANG S, WANG G, GAO X, ZHANG B, XING S, ZHAO S, QIN Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction[J]. Nat Commun,2019,10(1):4166. doi: 10.1038/s41467-019-11970-8
    [23]
    GAO Z, QIN Y. Design and properties of confined nanocatalysts by atomic layer deposition[J]. Acc Chem Res,2017,50(9):2309−2316. doi: 10.1021/acs.accounts.7b00266
    [24]
    YANG H, ZHANG B, ZHANG B, GAO Z, QIN Y. N-doped carbon modified Pt/CNTs synthesized by atomic layer deposition with enhanced activity and stability for methanol electrooxidation[J]. Chin J Catal,2018,39(6):1038−1043. doi: 10.1016/S1872-2067(18)63066-9
    [25]
    MARICHY C, BECHELANY M, PINNA N. Atomic layer deposition of nanostructured materials for energy and environmental applications[J]. Adv Mater,2012,24(8):1017−1032. doi: 10.1002/adma.201104129
    [26]
    YANG H, CHEN Y, QIN Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts[J]. Chin J Catal,2020,41(2):227−241. doi: 10.1016/S1872-2067(19)63440-6
    [27]
    XING S, GAO Z, ZHAO S, XIONG M, WANG P, ZHANG J, WANG S, WANG G, QIN Y. Amphiphilic confined Pt-based nanocatalysts produced by atomic layer deposition with enhanced catalytic performance for biphasic reactions[J]. Green Chem,2021,23(20):8116−8123. doi: 10.1039/D1GC02261J
    [28]
    XIONG M, GAO Z, ZHAO P, WANG G, YAN W, XING S, WANG P, MA J, JIANG Z, LIU X, MA J, XU J, QIN Y. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity[J]. Nat Commun,2020,11(1):4773. doi: 10.1038/s41467-020-18567-6
    [29]
    WEN Y, CAI J, ZHANG J, YANG J, SHI L, CAO K, CHEN R, SHAN B. Edge-selective growth of MCp2 (M = Fe, Co, and Ni) precursors on Pt nanoparticles in atomic layer deposition: A combined theoretical and experimental study[J]. Chem Mater,2018,31(1):101−111.
    [30]
    ZHENG Y, QIAO J, HU J, SONG F, HUO D, YUAN J, SHEN J, NIU L, WANG A. PtIr alloy nanowire assembly on carbon cloth as advanced anode catalysts for methanol oxidation[J]. Int J Hydrog Energy,2019,44(36):20336−20344. doi: 10.1016/j.ijhydene.2019.05.218
    [31]
    ZHOU X, LI X, PRINS R, LV J, WANG A, SHENG Q. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios[J]. J Catal,2021,394:167−180. doi: 10.1016/j.jcat.2020.08.030
    [32]
    LONI E, SIADATI M H, SHOKUHFAR A. Mesoporous cobalt-cobalt phosphide electrocatalyst for water splitting[J]. Mater Today Energy,2020,16:100398. doi: 10.1016/j.mtener.2020.100398
    [33]
    SUN X, LIU C, ZHANG P, GONG LWANG M. Interface-engineered silicon photocathodes with a NiCoP catalyst-modified TiO2 nanorod array outlayer for photoelectrochemical hydrogen production in alkaline solution[J]. J Power Sources,2021,484:229272.
    [34]
    ZHAO F, YANG H, QIN K, CUI GLIU Q. Three-dimensional heterogeneous copper cobalt phosphides Nanoflowers for enhancing catalytic performance for electro-oxidation of methanol[J]. J Chin Inst Chem Eng,2021,126:244−251.
    [35]
    XU J, LIU Y, LI J, AMORIM I, ZHANG B, XIONG D, ZHANG N, THALLURI S M, SOUSA J P SLIU L. Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol[J]. J Mater Chem A,2018,6(42):20646−20652. doi: 10.1039/C8TA07958G
    [36]
    ARUNACHALAM P, SHADDAD M, ALAMOUDI A, GHANEM MAL-MAYOUF A. Microwave-assisted synthesis of Co3(PO4)2 nanospheres for electrocatalytic oxidation of methanol in alkaline media[J]. Catalysts, 2017, 7 (12): 119.
    [37]
    YANG J, FU W, CHEN C, CHEN W, HUANG W, YANG R, KONG Q, ZHANG B, ZHAO J, CHEN C, LUO J, YANG F, DUAN X, JIANG Z, QIN Y. Atomic design and fine-tuning of subnanometric Pt catalysts to tame hydrogen generation[J]. ACS Catal,2021,11(7):4146−4156. doi: 10.1021/acscatal.0c04614
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2766) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return