Volume 51 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
JIANG Xiu-yun, YANG Wen-bing, SONG Hao, MA Qing-xiang, GAO Xin-hua, LI Peng, ZHAO Tian-sheng. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 120-128. doi: 10.1016/S1872-5813(22)60041-0
Citation: JIANG Xiu-yun, YANG Wen-bing, SONG Hao, MA Qing-xiang, GAO Xin-hua, LI Peng, ZHAO Tian-sheng. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 120-128. doi: 10.1016/S1872-5813(22)60041-0

Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol

doi: 10.1016/S1872-5813(22)60041-0
Funds:  The project was supported by National Natural Science Foundation of China (22169014, 21766027), Natural Science Foundation of Ningxia (2022AAC03040, 2021AAC03108) and Graduate Innovation Project of Ningxia University (GIP2020053)
  • Received Date: 2022-04-02
  • Accepted Date: 2022-06-10
  • Rev Recd Date: 2022-05-20
  • Available Online: 2022-06-23
  • Publish Date: 2023-01-10
  • The Cu/Zn/Al precursor by coprecipitation was treated with formic acid and then calcined in N2 to obtain Cu-ZnO-Al2O3 catalyst (CZA) for the CO2 hydrogenation to methanol. XRD, BET, TG-DSC, SEM, H2-TPR, N2O titration, XPS-AES and CO2-TPD characterization techniques were used to analyze the phase composition, structural properties of the catalyst, the Cu specific surface area, the dispersion and valence of the Cu species. The results showed that the formic acid treatment tuned the ratio of Cu+ and Cu0, increased the number of medium-strong base sites in the catalyst, and raised the selectivity of methanol. Under reaction conditions of W/F(H2/CO2=70/23)=10 g∙h/mol, t =200 ℃ and p =3 MPa, using Cu-ZnO-Al2O3 treated under HCOOH/Cu (molar ratio) =0.8, the CO2 conversion and the methanol selectivity were 6.7% and 76.3%, respectively.
  • loading
  • [1]
    WOODARD D L, DAVIS S J, RANDERSON J T. Economic carbon cycle feedbacks may offset additional warming from natural feedbacks[J]. Proc Natl Acad Sci USA,2019,116(3):759−764. doi: 10.1073/pnas.1805187115
    [2]
    高新华, 卢鹏飞, 陈国辉, 郭新雨, 梁洁, 马清祥, 张建利, 范素兵, 赵天生. K-Fe3O4/Ni-AlMCM-41 串联催化 CO2 加氢制高碳烃[J]. 燃料化学学报,2021,49(10):504−512.

    GAO Xin-hua, LU Peng-fei, CHEN Guo-hui, GUO Xin-yu, LIANG Jie, MA Qing-xiang, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Performance of K-Fe3O4/Ni-AlMCM-41 tandem catalyst for CO2 hydrogenation to long-chain hydrocarbons[J]. J Fuel Chem Technol,2021,49(10):504−512.
    [3]
    RA E C, KIM K Y, KIM E H, LEE H, AN K, LEE J S. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catal,2020,10(19):11318−11345.
    [4]
    POROSOFF M D, YAN B H, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73. doi: 10.1039/C5EE02657A
    [5]
    SEHESTED J. Industrial and scientific directions of methanol catalyst development[J]. J Catal,2019,371:368−375. doi: 10.1016/j.jcat.2019.02.002
    [6]
    OLAH G A. Beyond oil and gas: The methanol economy[J]. Angew Chem Int Ed,2005,44(18):2636−2639. doi: 10.1002/anie.200462121
    [7]
    JIANG X, NIE X W, GUO X W, SONG C S, CHEN J G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem Rev,2020,120(15):7984−8034. doi: 10.1021/acs.chemrev.9b00723
    [8]
    HU J T, YU L, DENG J, WANG Y, CHENG K, MA C, ZHANG Q H, WEN W, YU S S, PAN Y, YANG J Z, MA H, QI F, WANG Y JK, ZHENG Y P, CHEN M S, HUANG R, ZHANG S H, ZHAO Z C, MAO J, MENG X Y, JI Q Q, HOU G J, HAN X W, BAO X H, WANG Y, DENG D H. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nat Catal,2021,4(3):242−250. doi: 10.1038/s41929-021-00584-3
    [9]
    HAN Z, TANG C Z, WANG J J, LI L D, LI C. Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal,2020,394:236−244.
    [10]
    LI M J, TSANG E. Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: A mini-review and prospects[J]. Catal Sci Technol,2018,8(14):3450−3464. doi: 10.1039/C8CY00304A
    [11]
    YANG Y X, EVANS J, RODRIGUEZ J A, WHITE M G, LIU P. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001̄)[J]. Phys Chem Chem Phys,2010,12(33):9909−9917. doi: 10.1039/c001484b
    [12]
    WU J G, SAITO M, TAKEUCHI M, WATANABE T. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Appl Catal A: Gen,2001,218(1/2):235−240. doi: 10.1016/S0926-860X(01)00650-0
    [13]
    LIANG B L, MA J G, SU X, YANG C Y, DUAN H M, ZHOU H W, DENG S L, LI L, HUANG Y Q. Investigation on deactivation of Cu-ZnO-Al2O3 catalyst for CO2 hydrogenation to methanol[J]. Ind Eng Chem Res,2019,58(21):9030−9037. doi: 10.1021/acs.iecr.9b01546
    [14]
    ZHANG F, ZHANG Y L, LIU Y, GASEM K A M, CHEN J Y, CHIANG F K, WANG Y G, FAN M H. Synthesis of Cu-ZnO-Al2O3/Mg catalysts on methanol production by different precipitation methods[J]. Mol Catal,2017,441:190−198. doi: 10.1016/j.mcat.2017.08.015
    [15]
    林敏, 纳薇, 叶海船, 霍海辉, 高文桂. 不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究[J]. 燃料化学学报,2019,47(10):1214−1224. doi: 10.3969/j.issn.0253-2409.2019.10.008

    LIN Min, NA Wei, YE Hai-chuan, HUO Hai-hui, GAO Wen-gui. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol[J]. J Fuel Chem Technol,2019,47(10):1214−1224. doi: 10.3969/j.issn.0253-2409.2019.10.008
    [16]
    CAI W J, CHEN Q, WANG F, LI Z C, YU H, ZHANG S Z, CUI L, LI C M, Comparison of the promoted CuZnMxOy (M: Ga, Fe) catalysts for CO2 hydrogenation to methanol[J]. Catal Lett, 2019, 149(9): 2508–2518.
    [17]
    ARENA F, MEZZATESTA G, ZAFARANA G, TRUNFIO G, FRUSTERI F, SPADARO L. How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol[J]. Catal Today,2013,210:39−46. doi: 10.1016/j.cattod.2013.02.016
    [18]
    CHEN K, YU J, LIU B, SI C C, BAN H Y, CAI W J, LI C M, LI Z, FUJIMOTO K. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst[J]. J Catal,2019,372:163−173. doi: 10.1016/j.jcat.2019.02.035
    [19]
    LO I C, WU H W. Methanol formation from carbon dioxide hydrogenation using Cu-ZnO-Al2O3 catalyst[J]. J Taiwan Inst Chem E,2019,98:124−131. doi: 10.1016/j.jtice.2018.06.020
    [20]
    WANG Z Q, XU Z N, PENG S Y, ZHANG M J, LU G, CHEN Q S, CHEN Y M, GUO G C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catal,2015,5(7):4255−4259. doi: 10.1021/acscatal.5b00682
    [21]
    DONG X S, LI F, ZHAO N, XIAO F K, WANG J W, TAN Y S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method[J]. Appl Catal B: Environ,2016,191:8−17. doi: 10.1016/j.apcatb.2016.03.014
    [22]
    SHI L, SHEN W Z, YANG G H, FAN X J, FAN X J, JIN Y Z, ZENG C Y, MATSUDA K J, TSUBAKI N. Formic acid directly assisted solid-state synthesis of metallic catalysts without further reduction: as-prepared Cu/ZnO catalysts for low-temperature methanol synthesis[J]. J Catal,2013,302:83−90. doi: 10.1016/j.jcat.2013.02.025
    [23]
    WITOON T, PERMSIRIVANICH T, CHAREONPANICH M. Chitosan-assisted combustion synthesis of CuO-ZnO nanocomposites: effect of pH and chitosan concentration[J]. Ceram Int,2013,39(3):3371−3375. doi: 10.1016/j.ceramint.2012.08.018
    [24]
    LI L, MAO D S, YU J, GUO X M. Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method[J]. J Power Sources,2015,279:394−404. doi: 10.1016/j.jpowsour.2014.12.142
    [25]
    刘琰, 高志华, 郝树宏, 李帅帅, 黄伟. Cu-ZnO-Al2O3类水滑石制备过程pH值对其催化C2+醇合成的影响[J]. 石油学报(石油加工),2018,34(4):716−722.

    LIU Yan, GAO Zhi-hua, HAO Shu-hong, LI Shuai-shuai, HUANG Wei. Effect of pH value on the catalytic performance of Cu-ZnO-Al2O3-LDHs catalysts in the synthesis of C2+ alcohol[J]. Acta Pet Sin (Pet Proc Sect),2018,34(4):716−722.
    [26]
    高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕. 以类水滑石为前驱体的Cu-ZnO-Al2O3/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报,2014,30(6):1155−1162. doi: 10.3866/PKU.WHXB201401252

    GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu-ZnO-Al2O3/(Zr)/(Y) catalyst form hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin,2014,30(6):1155−1162. doi: 10.3866/PKU.WHXB201401252
    [27]
    肖硕, 高鹏, 杨海艳, 夏林, 张建明, 陈志文, 王慧. 层状Cu-ZnO-Al2O3催化剂的制备及其催化CO2加氢合成甲醇的性能[J]. 上海大学学报(自然科学版),2016,22(2):218−230.

    XIAO Shuo, GAO Peng, YANG Hai-yan, XIA Lin, ZHANG Jian-ming, CHEN Zhi-wen, WANG Hui. Preparation of layered Cu-ZnO-Al2O3 catalyst and its catalytic performance for CO2 hydrogenation to methanol[J]. J Shanghai Univ (Nat Sci Ed),2016,22(2):218−230.
    [28]
    SHI L, SUN D, WANG Y X, TAN Y S, LI J, YAN S R, FANG R G, TSUBAKI N. Formic acid assisted synthesis of highly efficient Cu/ZnO catalysts effect of HCOOH/Cu molar ratios[J]. Catal Sci Technol,2016,6:4777−4785. doi: 10.1039/C5CY02010G
    [29]
    LU P, CHIZEMA L G, HONDO E, TONG M L, XING C, LU C X, MEI Y F, YANG R Q. CO2 hydrogenation to methanol via In-situ reduced Cu/ZnO catalyst prepared by formic acid assisted grinding[J]. Chem Select,2019,4(19):5667−5677.
    [30]
    陈茂重, 王斓懿, 于学华, 赵震. 不同水热条件下MnO2的制备及其催化炭烟颗粒燃烧性能[J]. 工业催化,2018,26(10):56−63.

    CHEN Mao-zhong, WANG Lan-yi, YU Xue-hua, ZHAO Zhen. Preparation of MnO2 under different hydrothermal conditions and its catalytic performance for soot combustion[J]. Ind Catal,2018,26(10):56−63.
    [31]
    张一凡, 杨文兵, 马清祥, 高新华, 张建利, 李鹏, 赵天生, 李蓉. 氮化碳对Cu-ZnO-Al2O3催化CO2加氢合成甲醇的影响[J]. 石油学报(石油加工),2021,37(3):508−517.

    ZHANG Yi-fan, YANG Wen-bing, MA Qing-xiang, GAO Xin-hua, ZHANG Jian-li, LI Peng, ZHAO Tian-sheng, LI Rong. Effect of carbon nitride addition on Cu-ZnO-Al2O3 catalytic performance for CO2 hydrogenation to methanol[J]. Acta Pet Sin (Pet Proc Sect),2021,37(3):508−517.
    [32]
    LIU R W, QIN Z Z, JI H B, SU T M. Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system[J]. Ind Eng Chem Res,2013,52(47):16648−16655. doi: 10.1021/ie401763g
    [33]
    CLAUSEN B S, STEFFENSEN G, FABIUS B, VILLADSEN J, FEIDENHANS R, TOPSØE H. In situ cell for combined XRD and on-line catalysis tests: Studies of Cu-based water gas shift and methanol catalysts[J]. J Catal,1991,132(2):524−535. doi: 10.1016/0021-9517(91)90168-4
    [34]
    LI S Z, GUO L M, ISHIHARA T. Hydrogenation of CO2 to methanol over Cu/AlCeO2 catalyst[J]. Catal Today,2020,339:352−361. doi: 10.1016/j.cattod.2019.01.015
    [35]
    HOU X, XU C, LIU Y. Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde[J]. J Catal,2019,379:147−153. doi: 10.1016/j.jcat.2019.09.025
    [36]
    张磊, 雷俊腾, 田园, 胡鑫, 白金, 刘丹, 杨义, 潘立卫. 前驱体和沉淀剂浓度对 CuO/ZnO/CeO2-ZrO2 甲醇水蒸气重整制氢催化剂性能的影响[J]. 燃料化学学报,2015,43(11):1366−1374. doi: 10.3969/j.issn.0253-2409.2015.11.012

    ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol,2015,43(11):1366−1374. doi: 10.3969/j.issn.0253-2409.2015.11.012
    [37]
    LI J C, WANG L G, HUI X, ZHANG C J, CAO Y, XU S, HE P, LI H Q. Effective hydrogenation of carbonates to produce methanol over a ternary Cu-ZnO-Al2O3 catalyst[J]. RSC Adv,2020,10(22):13083−13094. doi: 10.1039/D0RA00347F
    [38]
    YU J F, YANG M, ZHANG J X, ZIMINA A, PRUESSMANN T, ZHENG L, GRUNWALDT J D, SUN J. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol[J]. ACS Catal,2020,10(24):14694−14706. doi: 10.1021/acscatal.0c04371
    [39]
    杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [40]
    DASIREDDY V D B C, LIKOZAR B. The role of copper oxidation state in Cu-ZnO-Al2O3 catalysts in CO2 hydrogenation and methanol productivity[J]. Renewable Energy,2019,140:452−460. doi: 10.1016/j.renene.2019.03.073
    [41]
    GAO P, LI F, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu-ZnO-Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A: Gen,2013,468:442−452. doi: 10.1016/j.apcata.2013.09.026
    [42]
    PRINTTTO F, GHIOTTI G, DURAND R, TICHIT D. Investigation of acid base properties of catalysts obtained from layered double hydroxides[J]. J Phys Chem B,2000,104(47):11117−11126. doi: 10.1021/jp002715u
    [43]
    LEON M, DIAZ E, BENNICI S, VEGA A, AUROUX A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility[J]. Ind Eng Chem Res,2010,49(8):3663−3671.
    [44]
    YANG H Y, GAO P, ZHANG C, ZHONG L S, LI X P, WANG S, WANG H, WEI W, SUN Y H. Core-shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Catal Commun,2016,84:56−60. doi: 10.1016/j.catcom.2016.06.010
    [45]
    WITOON T, NUMPILAI T, PHONGAMWONG T, DONPHAI W, BOONYUEN C, WARAKULWIT C, CHAREONPANICH M, LIMTRAKUL J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol[J]. Chem Eng J,2018,334:1781−1791. doi: 10.1016/j.cej.2017.11.117
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2066) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return