Volume 50 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LI Hai-xia, JIN Le-ying, ZHANG An-chao, SUN Zhi-jun, ZHANG Xin-min, ZHU Qi-feng, YANG Chang-ze, ZHANG Shuai-bo. Investigation of Co-doped Mn oxide catalyst for NH3-SCR activity and SO2/H2O resistance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1404-1416. doi: 10.1016/S1872-5813(22)60044-6
Citation: LI Hai-xia, JIN Le-ying, ZHANG An-chao, SUN Zhi-jun, ZHANG Xin-min, ZHU Qi-feng, YANG Chang-ze, ZHANG Shuai-bo. Investigation of Co-doped Mn oxide catalyst for NH3-SCR activity and SO2/H2O resistance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1404-1416. doi: 10.1016/S1872-5813(22)60044-6

Investigation of Co-doped Mn oxide catalyst for NH3-SCR activity and SO2/H2O resistance

doi: 10.1016/S1872-5813(22)60044-6
Funds:  The project was supported by the Key Research Project of Higher Education Institutions in Henan Province (23A470002) and the Innovative Research Team of Henan Polytechnic University (T2020-3).
More Information
  • Corresponding author: Tel: 0391-3987546, 0391-3987511, E-mail: lihx@hpu.edu.cnzhangxm@hpu.edu.cn
  • Received Date: 2022-03-16
  • Rev Recd Date: 2022-04-25
  • Available Online: 2022-08-06
  • Publish Date: 2022-11-30
  • A series of Co-doped Mn oxide catalysts with different Co/Mn molar ratios were prepared by co-precipitation method, which was systematically characterized by XRD, SEM, H2-TPR and NH3-TPD etc. Co-doped Mn oxide catalysts are evaluated for NH3-SCR activity and resistance to SO2 and/or H2O, and the Co(1)-MnOx catalyst with Mn/Co molar ratio of 1∶1 performs the best catalytic performance, which achieved higher than 90% NOx conversion in the temperature range of 100−275 °C and possessed better SO2 and H2O resistance. The Co(1)-MnOx catalyst presented a sphere-like structure possessing a relatively large surface area. Doping of cobalt greatly improved the high-valent metal ions and chemisorbed oxygen content of Co(1)-MnOx catalyst surface, and the catalyst possessed abundant active species and acid sites and apparent activation energy of the catalyst was reduced, which makes Co(1)-MnOx a highly effective NH3-SCR catalyst.
  • loading
  • [1]
    KANG H, WANG J J, ZHENG J, CHU W, TANG C J, JI J W, REN R, WU M X, JING F L. Solvent-free elaboration of Ni-doped MnOx catalysts with high performance for NH3-SCR in low and medium temperature zones[J]. Mol Catal,2021,501:111376. doi: 10.1016/j.mcat.2020.111376
    [2]
    WAN Y, ZHAO W, TANG Y, LI L, WANG H, CUI Y, GU J, LI Y, SHI J. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Appl Catal B: Environ,2014,148−149:114−122.
    [3]
    ANDANA T, RAPPÉ K G, GAO F, SZANYI J, PEREIRA-HERNANDEZ X, WANG Y. Recent advances in hybrid metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia[J]. Appl Catal B: Environ,2021,291:120054. doi: 10.1016/j.apcatb.2021.120054
    [4]
    CHEN S, VASILIADES M A, YAN Q, YANG G, DU X, ZHANG C, LI Y, ZHU T, WANG Q EFSTATHIOU A M. Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies[J]. Appl Catal B: Environ,2020,277:119186. doi: 10.1016/j.apcatb.2020.119186
    [5]
    CHENG K, LIU J, ZHAO Z, WEI Y C, JIANG G Y, DUAN A J. Direct synthesis of V-W-Ti nanoparticle catalysts for selective catalytic reduction of NO with NH3[J]. RSC Adv,2015,5(56):45172−45183. doi: 10.1039/C5RA05978J
    [6]
    YAO X J, MA K L, ZOU W X, HE S G, AN J B, YANG F M, DONG L. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chin J Catal,2017,38(1):146−159. doi: 10.1016/S1872-2067(16)62572-X
    [7]
    LIU J, LI G Q, ZHANG Y F, LIU X Q, WANG Y, LI Y. Novel Ce-W-Sb mixed oxide catalyst for selective catalytic reduction of NOx with NH3[J]. Appl Surf Sci,2017,401:7−16. doi: 10.1016/j.apsusc.2016.12.244
    [8]
    SHI Y R, YI H H, GAO F, ZHAO S Z, XIE Z L, TANG X L. Evolution mechanism of transition metal in NH3-SCR reaction over Mn-based bimetallic oxide catalysts: Structure-activity relationships[J]. J Hazard Master,2021,413:125361. doi: 10.1016/j.jhazmat.2021.125361
    [9]
    PENG Y, QU R Y, ZHANG X Y, LI J H. The relationship between structure and activity of MoO3-CeO2 catalysts for NO removal: influences of acidity and reducibility[J]. Catal Commun,2013,49(55):6215−6217.
    [10]
    WANG C Z, YANG S J, CHANG H Z, PENG Y, LI J H. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3[J]. J Mol Catal A: Chem,2013,376:13−21. doi: 10.1016/j.molcata.2013.04.008
    [11]
    ZHAO Q, CHEN B B, CROCKER M, SHI C. Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx[J]. Appl Catal B: Environ,2020,277:119215. doi: 10.1016/j.apcatb.2020.119215
    [12]
    LIU L, WANG B D, YAO X J, YANG L, JIANG W J, JIANG X. Highly efficient MnOx/biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO[J]. Fuel,2021,283:119336. doi: 10.1016/j.fuel.2020.119336
    [13]
    GENG Y, SHAN W P, LIU F D, YANG S J. Adjustment of operation temperature window of Mn-Ce oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. J Hazard Mater,2021,405:124223. doi: 10.1016/j.jhazmat.2020.124223
    [14]
    CHEN L Q, NIU X Y, LI Z B, DONG Y L, ZHANG Z P, YUAN F L, ZHU Y J. Promoting catalytic performances of Ni-Mn spinel for NH3-SCR by treatment with SO2 and H2O[J]. Catal Commun,2016,85:48−51. doi: 10.1016/j.catcom.2016.07.013
    [15]
    ZHANG S B, LI H X, ZHANG A C, SUN Z J, ZHANG X M, YANG C Z, JIN L Y, SONG Z H. Selective catalytic reduction of NOx by low temperature NH3 over MnxZr1 mixed-oxide catalysts[J]. RSC Advances,2022,12:1341−1351.
    [16]
    FAN R Y, XIE J Y, YU N, CHAI Y M, DONG B. Interface design and composition regulation of cobalt-based electrocatalysts for oxygen evolution reaction[J]. Int J Hydrogen Energ,2022,47(19):10547−10572.
    [17]
    ZHU Y , XIAO X, WANG J, MA C, JIA X, QIAO W. Enhanced activity and water resistance of hierarchical flower-like Mn-Co binary oxides for ammonia-SCR reaction at low temperature[J]. Appl Surface Sci,2021,569:150989.
    [18]
    SUMMA P, ŚWIRK K, WANG Y, SAMOJEDEN B, RØNNING M, HU C, MOTAK M, COSTA P D. Effect of cobalt promotion on hydrotalcite-derived nickel catalyst for CO2 methanation[J]. Appl Mater Today,2021,25:101211.
    [19]
    JIANG H X, WANG Q Y, WANG H Q, CHEN Y F, ZHANG M F. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process[J]. Catal Commun,2016,80:24−27. doi: 10.1016/j.catcom.2016.03.013
    [20]
    YAN Q Y, LI X Y, ZHAO Q D, CHEN G H. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene[J]. J Hazard Mater,2012,209−210:385−391.
    [21]
    JIANG H, GUAN B, PENG X S, ZHAN R, LIN H, HUANG Z. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction[J]. Chem Eng J,2020,379:122358. doi: 10.1016/j.cej.2019.122358
    [22]
    MENG D M, XU Q, JIAO Y, GUO Y, GUO Y, WANG L, LU G, ZHAN W. Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2018,221:652−663. doi: 10.1016/j.apcatb.2017.09.034
    [23]
    HU X N, HUANG L, ZHANG J P, LI H R, ZHA K W, SHI L Y, ZHANG D S. Facile and template-free fabrication of mesoporous 3D nanosphere-like MnxCo3–xO4 as highly effective catalysts for low temperature SCR of NOx with NH3[J]. J Mater Chem A,2018,6(7):2952−2963. doi: 10.1039/C7TA08000J
    [24]
    ZHANG Q L, LIU X, NING P, SONG Z X, LI H, GU J J. Enhanced performance in NOx reduction by NH3 over a mesoporous Ce-Ti-MoOx catalyst stabilized by a carbon template[J]. Catal Sci Technol,2015,5:2260−2269. doi: 10.1039/C4CY01371A
    [25]
    ZHAO K, MENG J P, LU J Y, HE Y, HUANG H Z, TANG Z C, ZHEN X P. Sol-gel one-pot synthesis of efficient and environmentally friendly iron-based catalysts for NH3 -SCR[J]. Appl Surf Sci,2018,445:454−461. doi: 10.1016/j.apsusc.2018.03.160
    [26]
    AGUILERA D A, PEREZ A, MOLINA R, MORENO S. Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs[J]. Appl Catal B: Environ,2011,104(1/2):144−150. doi: 10.1016/j.apcatb.2011.02.019
    [27]
    JIANG S J, SONG S Q. Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by tuning the surface structures of CNTs[J]. Appl Catal B: Environ,2013,140−141:1−8.
    [28]
    HAN Y L, MU J C, LI X Y, GAO J S, TAN F, ZHAO Q D. Triple-shelled NiMn2O4 hollow spheres as an efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Catal Commun,2018,54(70):9797−9800.
    [29]
    BAI Y Z, ZHU J H, LUO H J, WANG Z F, GONG Z J, ZHAO R, WU W F, ZHANG K. Study on NH3-SCR performance and mechanism of Fe/Mn modified rare earth concentrate[J]. Mol Catal,2021,514:111665.
    [30]
    LI J, JIA L W, JIN W Y, XIA F, WANG J M. Effects of Ce-doping on the structure and NH3-SCR activity of Fe/Beta catalyst[J]. Rare Metal Mat Eng,2015,44(7):1612−1616. doi: 10.1016/S1875-5372(15)30102-8
    [31]
    MENG D M, ZHANG W C, GUO Y, GUO Y L, LU G Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance[J]. ACS Catal,2017,5(10):5973−5983.
    [32]
    GAO F Y, YANG C, TANG X L, YI H H, WANG C Z. Co- or Ni-modified Sn-MnOx low-dimensional multi-oxides for high-efficient NH3-SCR De-NOx: Performance optimization and reaction mechanism[J]. J Environ Sci,2022,113:204−218. doi: 10.1016/j.jes.2021.05.032
    [33]
    LEI Z, SHI L Y, HUANG L, ZHANG J P, ZHANG D S. Rational design of high-performance DeNOx catalysts based on MnxCo3–xO4 nanocages derived from metal-organic frameworks[J]. ACS Catal,2014,4(6):1753−1763. doi: 10.1021/cs401185c
    [34]
    ZHENG H L, SONG W Y, ZHOU Y, MA S C DENG J L, LI Y H, LIU J, ZHAO Z. Mechanistic study of selective catalytic reduction of NOx with NH3 over Mn-TiO2: A combination of experimental and DFT study[J]. J Phys Chem C,2017,36:19859−19871.
    [35]
    LIU J, MEEPRASERT J, NAMUANGRUK S, LI H R, HUANG L, MAITARAD P, SHI L Y, ZHANG D S. Facet-activity relationship of TiO2 in Fe2O3/TiO2 nanocatalysts for selective catalytic reduction of NO with NH3: In situ DRIFTs and DFT studies[J]. J Phys Chem C,2017,121(9):4970−4979. doi: 10.1021/acs.jpcc.6b11175
    [36]
    XU L W, WANG C Z, CHANG H Z, WU Q R, ZHANG T, LI J H. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environ Sci Technol,2018,52(12):7064−7071. doi: 10.1021/acs.est.8b01990
    [37]
    CHEN Q L, GUO R T, WANG Q S, PAN W G, YANG N Z, LU C Z, WANG S X. The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO[J]. J Taiwan Inst Chem E,2016,64:116−123. doi: 10.1016/j.jtice.2016.03.045
    [38]
    LI J Y, SONG Z X, NING P, ZHANG Q L, LIU X, LI H, HUANG Z Z. Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst[J]. J Rare Earth,2015,33(7):726−735. doi: 10.1016/S1002-0721(14)60477-4
    [39]
    KRYCA J, JODŁOWSKI P J, IWANISZYN M, GIL B, KOŁODZIEJ A, ŁOJEWSKA T, ŁOJEWSKA J. Cu SSZ-13 zeolite catalyst on metallic foam support for SCR of NO with ammonia: Catalyst layering and characterisation of active sites[J]. Catal Today,2016,268:142−149. doi: 10.1016/j.cattod.2015.12.018
    [40]
    PENG B, FENG C, LIU S S, ZHANG R D. Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process[J]. Catal Today,2018,314:122−128. doi: 10.1016/j.cattod.2017.10.044
    [41]
    SI W Z, LIU H Y, YAN T, WANG H, FAN C, XIONG S C, ZHAO Z Q, PENG Y, CHEN J J, LI J H. Sn-doped rutile TiO2 for vanadyl catalysts: Improvements on activity and stability in SCR reaction[J]. Appl Catal B: Environ,2020,269:118797. doi: 10.1016/j.apcatb.2020.118797
    [42]
    GILLOT S, TRICOT G, VEZIN H, DACQUIN J P, DUJARDIN C, GRANGER P. Development of stable and efficient CeVO4 systems for the selective reduction of NOx by ammonia: Structure-activity relationship[J]. Appl Catal B: Environ,2017,218:338−348. doi: 10.1016/j.apcatb.2017.06.049
    [43]
    WANG C Z, TANG X L, YI H H, GAO F Y, NI S Q, ZHANG R C, SHI Y R. MnCo nanoarray in-situ grown on 3D flexible nitrogen-doped carbon foams as catalyst for high-performance denitration[J]. Colloid Surface A,2021,612:126007. doi: 10.1016/j.colsurfa.2020.126007
    [44]
    ZHU L, ZHONG Z P, XUE J M, XU Y Y, WANG C H, WANG L X. NH3-SCR performance and the resistance to SO2 for Nb doped vanadium based catalyst at low temperatures[J]. J Environ Sci,2018,65:306−316. doi: 10.1016/j.jes.2017.06.033
    [45]
    ZHANG Y, ZHAO L, KANG M D, CHEN Z A, GAO S J, HAO H G. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance[J]. Chem Eng J,2021,426:131873. doi: 10.1016/j.cej.2021.131873
    [46]
    CHEN C, XIE H D, HE P W, LIU X, YANG C, WANG N, GE C M. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method[J]. Appl Surf Sci,2022,571:151285. doi: 10.1016/j.apsusc.2021.151285
    [47]
    GAO G, SHI J W, FAN Z Y, GAO C, NIU C. MnM2O4 microspheres (M = Co, Cu, Ni) for selective catalytic reduction of NO with NH3: Comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy[J]. Chem Eng J,2017,325:91−100. doi: 10.1016/j.cej.2017.05.059
    [48]
    FANG N J, GUO J X, SHU S, LUO H D, LI J J, CHU Y H. Effect of calcination temperature on low-temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst[J]. J Taiwan Inst Chem E,2018,93:277−288. doi: 10.1016/j.jtice.2018.07.027
    [49]
    JIA B H, GUO J X, SHU S, FANG N J, LI J J, CHU Y H. Effects of different Zr/Ti ratios on NH3-SCR over MnO /ZryTi1–yO2: Characterization and reaction mechanism[J]. Mol Catal,2017,443:25−37. doi: 10.1016/j.mcat.2017.09.019
    [50]
    FANG N J, GUO J X, SHU S S, LUO H D, CHU Y H, LI J J. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR[J]. Chem Eng J,2017,325:114−123. doi: 10.1016/j.cej.2017.05.053
    [51]
    HE J, REDDY G K, THIEL S W, SMIRNIOTIS P G, PINTO N G. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas[J]. J Phys Chem C,2011,115(49):24300−24309. doi: 10.1021/jp208768p
    [52]
    ALI S, CHEN L Q, YUAN F L, LI R, ZHANG T R, BAKHTIAR S H, LENG X S, NIU X Y, ZHU Y J. Synergistic effect between copper and cerium on the performance of Cux-Ce0.5–x-Zr0.5 (x = 0.1–0.5) oxides catalysts for selective catalytic reduction of NO with ammonia[J]. Appl Catal B: Environ,2017,210:223−234. doi: 10.1016/j.apcatb.2017.03.065
    [53]
    WANG Z Y, GUO R T, SHI X, PAN W G, LIU J, SUN X, LIU S W, LIU X Y, HAO Q. The enhanced performance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Appl Surf Sci,2019,475:334−341. doi: 10.1016/j.apsusc.2018.12.281
    [54]
    GUAN B, JIANG H, PENG X S, WEI Y F, LIU Z Q, CHEN T, LIN H, HUAN Z. Promotional effect and mechanism of the modification of Ce on the enhanced NH3-SCR efficiency and the low temperature hydrothermal stability over Cu/SAPO-34 catalysts[J]. Appl Catal A: Gen,2021,617:118110. doi: 10.1016/j.apcata.2021.118110
    [55]
    CHEN J Y, FU P, LV D, LV D F, CHEN Y, FAN M L, WU J L, MESHRAM A, MU B, LI X, XIA Q B. Unusual positive effect of SO2 on Mn-Ce mixed-oxide catalyst for the SCR reaction of NOx with NH3[J]. Chem Eng J,2021,407:127071. doi: 10.1016/j.cej.2020.127071
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (268) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return