Volume 51 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
WANG Gui-jin, YUAN Hong-you, JIN Li-jun, LI Yang, YANG He, HU Hao-quan. Steam co-gasification characteristics of black liquor char and petroleum coke coupled with TiO2 direct causticization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 348-357. doi: 10.1016/S1872-5813(22)60046-X
Citation: WANG Gui-jin, YUAN Hong-you, JIN Li-jun, LI Yang, YANG He, HU Hao-quan. Steam co-gasification characteristics of black liquor char and petroleum coke coupled with TiO2 direct causticization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 348-357. doi: 10.1016/S1872-5813(22)60046-X

Steam co-gasification characteristics of black liquor char and petroleum coke coupled with TiO2 direct causticization

doi: 10.1016/S1872-5813(22)60046-X
Funds:  The project was supported by the Fundamental Research Funds for the Central Universities (DUT21TD103), Liaoning Revitalization Talent Program (XLYC1908033) and Dalian Innovation Team Support Plan in Key Areas (2019RT10)
  • Received Date: 2022-05-22
  • Accepted Date: 2022-06-23
  • Rev Recd Date: 2022-06-23
  • Available Online: 2022-10-25
  • Publish Date: 2023-03-15
  • The isothermal steam gasification experiments of a ternary mixture (BTP) containing black liquor char (BLC), causticizing agent (TiO2), and petroleum coke (PC) were carried out at 850 °C based on a thermogravimetric analyzer (TGA) and a horizontal fixed-bed reactor. A co-gasification process of BLC and PC coupled with TiO2 direct causticization was explored from the aspect of reaction rate as well as the characteristics of gaseous products and gasification residues (GR). The results show that in comparison to the weighted average (BTPtheo) of the independent gasification of TiO2 direct causticized BLC and PC, significant synergistic effects could be aroused during the coupled co-gasification process due to promoting action of mNa2nTiO2 on gasification of organic carbon. Specifically, the maximum reaction rate of BTP reaches 7.0%/min, which is 2.9 times that of BTPtheo. The content and yield of effective gas components, i.e., H2+CO, in the gas products, as well as its lower heating value (LHV) of BTP are 81.1%, 2059 mL/g, and 9343 kJ/m3, respectively, which is 6.8%, 137.3%, and 5.5% higher than that of BTPtheo. The carbon conversion and energy output ratio of BTP reaches 95.0% and 1.13, respectively, which is increased by 61.6% and 135.4% relative to the theoretical superposition value. In addition, the relative loss of inorganic salts in BTP during the whole thermochemical conversion process is effectively controlled at a lower level of about 9.4%. Since the Na-containing salts in GR of BTP are mainly mNa2nTiO2 with higher thermal stability, and GR maintains good particle flowability, it is conducive to downstream alkali recovery.
  • loading
  • [1]
    SRICHAROENCHAIKUL V, FREDERICK WJ, AGRAWAL P. Carbon distribution in char residue from gasification of kraft black liquor[J]. Biomass Bioenergy,2003,25(2):209−220. doi: 10.1016/S0961-9534(02)00193-9
    [2]
    AZADI P, INDERWILDI OR, FARNOOD R, KING DA. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable Sustainable Energy Rev,2013,21:506−523. doi: 10.1016/j.rser.2012.12.022
    [3]
    BERGLIN N, BERNTSSON T. CHP in the pulp industry using black liquor gasification: Thermodynamic analysis[J]. Appl Therm Eng,1998,18(11):947−961. doi: 10.1016/S1359-4311(98)00038-6
    [4]
    CONNOLLY T S. CO2 pyrolysis and gasification of kraft black liquor char[D]. Orono, ME (United States): The University of Maine, 2006.
    [5]
    PELS J R, ZENG L, VAN HEININGEN A R P. Direct causticization of kraft black liquor with 2 in a fluidized bed - Identification and analysis of sodium titanates[J]. J Pulp Pap Sci,1997,23(12):549−554.
    [6]
    ZENG L, PELS J, VAN HEININGEN A. Direct causticization of kraft black liquor solids with TiO2 in a fluidized bed [J]. Tappi J, 2000, 83(12).
    [7]
    NOHLGREN I, SRICHAROENCHAIKUL V, SINQUEFIELD S, THELIANDER H, FREDERICK WJ. Black liquor gasification with direct causticization using titanates in a pressurized entrained-flow reactor. part II: Carbon and carbon species transitions[J]. J Pulp Pap Sci,2003,29(10):348−355.
    [8]
    NAQVI M, YAN J, DAHLQUIST E. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO2 capture[J]. Bioresour Technol,2012,110:637−644. doi: 10.1016/j.biortech.2012.01.070
    [9]
    CHEN X, VAN HEININGEN A. R. P. Kinetics of the direct causticizing reaction between sodium carbonate and titanium dioxide or sodium trititanate[J]. J Pulp Pap Sci,2006,32(4):245−251.
    [10]
    NOHLGREN I, THELIANDER H, ZHUANG Q, VAN HEININGEN A. R. P. Model study of the direct causticization reaction between sodium trititanate and sodium carbonate[J]. Can J Chem Eng,2000,78(3):529−539. doi: 10.1002/cjce.5450780312
    [11]
    YUAN H, WU S, YIN X, GUO D, WANG G, ZHOU Z, WU C. Effects of silica on chemical recovery in the direct causticization of wheat straw black liquor[J]. Tappi J,2016,15(8):557−566. doi: 10.32964/TJ15.8.557
    [12]
    DAHLQUIST E, JONES A. Presentation of a dry black liquor gasification process with direct causticization[J]. Tappi J,2005,4(6):15−19.
    [13]
    WANG G, YUAN H, GUO D, ZHOU Z, YIN X, WU C. Effects of titanium dioxide as direct causticization agent on the pyrolysis and steam gasification characteristics of straw black liquor solid[J]. Tappi J,2015,14(6):361−369. doi: 10.32964/TJ14.6.361
    [14]
    ZENG L, VAN HEININGEN A R P. Pilot fluidized-bed testing of kraft black liquor gasification and its direct causticization with TiO2[J]. J Pulp Pap Sci,1997,23(11):511−516.
    [15]
    WANG M, WAN Y, GUO Q, BAI Y, YU G, LIU Y, ZHANG H, ZHANG S, WEI J. Brief review on petroleum coke and biomass/coal co-gasification: Syngas production, reactivity characteristics, and synergy behavior[J]. Fuel,2021,304:121517. doi: 10.1016/j.fuel.2021.121517
    [16]
    WANG B, LI W, MA C, YANG W, PUDASAINEE D, GUPTA R, SUN L. Synergistic effect on the co-gasification of petroleum coke and carbon-based feedstocks: A state-of-the-art review[J]. J Energy Inst,2022,102:1−13. doi: 10.1016/j.joei.2022.02.007
    [17]
    YANG H, SONG H, ZHAO C, HU J, LI S, CHEN H. Catalytic gasification reactivity and mechanism of petroleum coke at high temperature[J]. Fuel,2021,293:120469. doi: 10.1016/j.fuel.2021.120469
    [18]
    HE Q, YU J, SONG X, DING L, WEI J, YU G. Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components[J]. Energy,2020,192:116642. doi: 10.1016/j.energy.2019.116642
    [19]
    WEI J, GUO Q, GONG Y, DING L, YU G. Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification[J]. Renewable Energy,2020,155:111−120. doi: 10.1016/j.renene.2020.03.132
    [20]
    LI Y, YANG H, HU J, WANG X, CHEN H. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel,2014,117:1174−1180. doi: 10.1016/j.fuel.2013.08.066
    [21]
    EDREIS EM, LI X, ATYA AH, SHARSHIR SW, ELSHEIKH AH, MAHMOUD NM, LUO G, YAO H. Kinetics, thermodynamics and synergistic effects analyses of petroleum coke and biomass wastes during H2O co-gasification[J]. Int J Hydrogen Energy,2020,45(46):24502−24517. doi: 10.1016/j.ijhydene.2020.06.239
    [22]
    LI J, WANG Y, ZHU L, ZHANG Z, XIAO H. Experimental study on co-pyrolysis of petroleum coke and coals: Synergy effects and co-gasification reactivity[J]. Fuel,2020,279:118368. doi: 10.1016/j.fuel.2020.118368
    [23]
    SONG H, YANG H, ZHAO C, HU J, ZOU J, WU P, LI S, CHEN H. Co-gasification of petroleum coke with coal at high temperature: Effects of blending ratio and the catalyst[J]. Fuel,2022,307:121863. doi: 10.1016/j.fuel.2021.121863
    [24]
    刘虎平, 张轩, 于敦喜, 于戈, 喻鑫, 吴建群, 徐明厚, 乔慧坡, 王泉斌. 煤/石油焦共气化过程中AAEM的催化转化行为[J]. 燃烧科学与技术,2020,26(2):105−112.

    LIU Hu-ping, ZHANG Xuan, YU Dun-xi, YU Ge, YU Xin, WU Jian-qun, XU Ming-hou, QIAO Hui-po, WANG Quan-bin. Catalytic characteristics and transformation of AAEMs during co-gasification of coal and petroleum coke[J]. J Combust Sci Technol,2020,26(2):105−112.
    [25]
    NEMANOVA V, ABEDINI A, LILIEDAHL T, ENGVALL K. Co-gasification of petroleum coke and biomass[J]. Fuel,2014,117:870−875. doi: 10.1016/j.fuel.2013.09.050
    [26]
    邹建辉, 周志杰, 代正华, 刘海峰, 王辅臣, 于遵宏. 三种工业废料对石油焦CO2气化动力学的影响[J]. 燃料化学学报,2008,36(3):279−285. doi: 10.3969/j.issn.0253-2409.2008.03.005

    ZOU Jian-hui, ZHOU Zhi-jie, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen, YU Zun-hong. Effects of three industrial wastes on kinetic characteristics of petroleum coke-CO2 gasification[J]. J Fuel Chem Technol,2008,36(3):279−285. doi: 10.3969/j.issn.0253-2409.2008.03.005
    [27]
    ZHAN X, ZHOU Z, WANG F. Catalytic effect of black liquor on the gasification reactivity of petroleum coke[J]. Appl Energy,2010,87(5):1710−1715. doi: 10.1016/j.apenergy.2009.10.027
    [28]
    王贵金, 袁洪友, 郭大亮, 周肇秋, 阴秀丽, 吴创之. 草浆黑液半焦与石油焦水蒸气共气化特性[J]. 石油学报(石油加工),2015,31(4):897−903.

    WANG Gui-jin, YUAN Hong-you, GUO Da-liang, ZHOU zhao-qiu, YIN Xiu-li, WU Chuang-zhi. Steam Co-gasification characteristics of wheat straw black liquor char and petroleum coke[J]. Acta Pet Sin Pet Process Sect,2015,31(4):897−903.
    [29]
    周志杰, 熊杰, 展秀丽, 于广锁. 造纸黑液对石油焦-CO2气化的催化作用及动力学补偿效应[J]. 化工学报,2011,62(4):934−939.

    ZHOU Zhi-jie, XIONG Jie, ZHAN Xiu-li, YU Guang-suo. Catalysis of black liquor for petroleum coke-CO2 gasification and kinetic compensation effect[J]. J Chem Ind Eng (China),2011,62(4):934−939.
    [30]
    于德平, 张玉明, 杨运泉, 高士秋, 许光文. 流化床中造纸黑液催化石油焦气化特性[J]. 石油学报(石油加工),2013,29(3):438−446.

    YU De-ping, ZHANG Yu-ming, YANG Yun-quan, GAO Shi-qiu, XU Guang-wen. Gasification characteristics of petroleum coke catalyzed by black liquor in a fluidized bed[J]. Acta Pet Sin Pet Process Sect,2013,29(3):438−446.
    [31]
    ZHANG Y, YAO M, GAO S, SUN G, XU G. Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed[J]. Appl Energy,2015,160:820−828. doi: 10.1016/j.apenergy.2015.01.009
    [32]
    DING L, DAI Z, WEI J, ZHOU Z, YU G. Catalytic effects of alkali carbonates on coal char gasification[J]. J Energy Inst,2017,90(4):588−601. doi: 10.1016/j.joei.2016.05.003
    [33]
    XU B, CAO Q, KUANG D, GASEM KA, ADIDHARMA H, DING D, FAN M. Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3-FeCO3[J]. J Energy Inst,2020,93(3):922−933. doi: 10.1016/j.joei.2019.08.004
    [34]
    MAGDELDIN M, JÄRVINEN M. Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation[J]. Appl Energy,2020,262:114558. doi: 10.1016/j.apenergy.2020.114558
    [35]
    FREDERICK WJ, IISA K, WAG K, REIS VV, BOONSONGSUP L, FORSSEN M, HUPA M. Sodium and sulfur release and recapture during black liquor burning[R]. Corvallis, OR (United States): Oregon State University, 1995.
    [36]
    TANG G, GU J, WEI G, HUANG Z, WU J, YUAN H, CHEN Y. Syngas production from cellulose solid waste by enhanced chemical looping gasification using Ca-Fe bimetallic oxygen carrier with porous structure[J]. Fuel,2022,322:124106. doi: 10.1016/j.fuel.2022.124106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (382) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return