Volume 51 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
WU Mei-xia, CHEN Yan, LI Sen, YANG Xiao-meng, LI Jing-wei, SHANG Jian-peng, GUO Yong, LI Zuo-peng. Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 197-204. doi: 10.1016/S1872-5813(22)60052-5
Citation: WU Mei-xia, CHEN Yan, LI Sen, YANG Xiao-meng, LI Jing-wei, SHANG Jian-peng, GUO Yong, LI Zuo-peng. Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 197-204. doi: 10.1016/S1872-5813(22)60052-5

Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions

doi: 10.1016/S1872-5813(22)60052-5
Funds:  The project was supported by Natural Science Foundation of Shanxi (201901D111310, 201801D221057), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (2020L0478, 2021L388) and Natural Science Foundation of Datong (2019160)
More Information
  • Corresponding author: E-mail: nmsjp2006@126.comlizuopeng@126.com
  • Received Date: 2022-04-17
  • Rev Recd Date: 2022-06-06
  • Available Online: 2022-07-19
  • Publish Date: 2023-01-18
  • Hydrogen production from electrolyzed water driven by sustainable energy is an effective way to achieve the hydrogen economy with zero carbon emission. Alkaline electrocatalytic hydrogen evolution reaction (HER) is one of the main energy transforming processes in the field of electrolytic water technology. The development of active and cost-effective nonprecious catalytic electrodes is of great importance to alkaline hydrogen evolution reaction. Amorphous nanosized nickel-boron alloy particles (NiB-COS) have been obtained by using chitosan oligosaccharides (COS) as a stabilizer via chemical reduction method. The as-prepared electrocatalysts have been used for the hydrogen evolution reaction (HER). The electrocatalysts have been characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma analysis (ICP) and X-ray photoelectron spectroscopy (XPS). NiB-COS displays a significant increase in hydrogen evolution reaction properties in alkaline media, affording low overpotentials of 49.4 mV at 10 mA/cm2 and 15.1 mV onset overpotential for the hydrogen evolution reaction. Tafel slope of NiB-COS is 86.1 mV/dec. Remarkably, the formation of a nickel-boron alloyed phase and the decrease of particle size are helpful to improve HER activity of NiB-COS. The experimental data indicated that the NiB-COS showed excellent long-term stability as a very active electrocatalyst.
  • loading
  • [1]
    WANG H Y, WENG C C, REN J T, YUAN Z Y. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front Chem Sci Eng,2021,15(6):1408−1426. doi: 10.1007/s11705-021-2102-6
    [2]
    ZHENG Y, JIAO Y, JARONIEC M, QIAO S Z. Advancing the electrochemistry of the hydrogen evolution reaction through combining experiment and theory[J]. Angew Chem Int Ed,2015,54:52−65. doi: 10.1002/anie.201407031
    [3]
    DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature,2012,486:43−51. doi: 10.1038/nature11115
    [4]
    SHARMA S, GHOSHAL S K. Hydrogen the future transportation fuel from production to applications[J]. Renewable Sustainable Energy Rev,2015,43:1151−1158. doi: 10.1016/j.rser.2014.11.093
    [5]
    NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renewable Sustainable Energy Rev,2017,67:597−611. doi: 10.1016/j.rser.2016.09.044
    [6]
    TRIPATHY R K, SAMANTARA A K, BEHERA J N. Metal-organic framework (MOF)-derived amorphous nickel boride: an electroactive material for electrochemical energy conversion and storage application[J]. Sustainable Energy Fuels,2021,5(4):1184−1193. doi: 10.1039/D0SE01831G
    [7]
    SCHMIDT T J, ROSS JR P N, MARKOVIC N M. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes Part 2. The hydrogen evolution/oxidation reaction[J]. J Electro Chem,2002,524−525:252−260.
    [8]
    MARKOVIC N M, GRGUR B N, LUCAS C A, ROSS P N. Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid Solutions[J]. J Phys Chem B,1999,103:487−495. doi: 10.1021/jp983177c
    [9]
    YANG Y, XU X, WANG X. Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting[J]. Sci China Mater,2015,58:775−784. doi: 10.1007/s40843-015-0088-4
    [10]
    DOU S, TAO L, HUO J, WANG S Y, DAI L M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis[J]. Energy Environ Sci,2016,9:l320−l326.
    [11]
    CABÁN-ACEVEDO M, STONE M L, SCHMIDT J R, THOMAS J G, DING Q, CHANG H C, TSAI M L, He J H, JIN S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosulphide[J]. Nat Mater,2015,14:1245−1251. doi: 10.1038/nmat4410
    [12]
    MORALES-GUIO C G, HU X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Acc Chem Res,2014,47:2671−2681.
    [13]
    WU Z, GUO, W JIE, RONG L, WANG D. Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for HER in alkaline medium[J]. ACS Appl Mater Interfaces,2017,9:5288−5294. doi: 10.1021/acsami.6b15244
    [14]
    MA T Y, DAI S, JARONIEC M, SHI Z Q. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. J Am Chem Soc,2014,l36:13925−l3931.
    [15]
    LIU Q, TIAN J Q, CUI W, JIANG P. Carbon nanotubes decorated with CoP nanocrystals a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angew Chem Int Ed,2014,53:6710−6714. doi: 10.1002/anie.201404161
    [16]
    BAO J, ZHANG X D, FAN B, ZHANG J J, ZHOU M, YANG W L, HU X, WANG H, PAN B C, XIE Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angew Chem Int Ed,2015,54:7399−7404. doi: 10.1002/anie.201502226
    [17]
    ZHU Y P, LIU Y P, REN T Z, YUAN Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation[J]. Adv Funct Mater,2015,25:7337−7347. doi: 10.1002/adfm.201503666
    [18]
    YAN Y, XIA B Y, GE X M, LIU Z L, FISHER A, WANG X. A flexible electrode based on iron phosphide nanotubes for overall water splitting[J]. Chem Eur J,2015,21:18062−18067. doi: 10.1002/chem.201503777
    [19]
    WONTERGHEM J V, MORUP S, KOCH C J W, CHARLES S W, WELLS S. Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution[J]. Nature,1986,322:622−62. doi: 10.1038/322622a0
    [20]
    WANG Y D, AI X P, YANG H X. Electrochemical hydrogen storage behaviors of ultrasmall amorphous Co-B alloy particles[J]. Chem Mater,2004,16:5194−5197. doi: 10.1021/cm049252f
    [21]
    LIU Z, LI Z L, WANG F, LIU J J, JI J, PARK K C, ENDO M. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene[J]. Mater Res Bull,2012,47:338−343. doi: 10.1016/j.materresbull.2011.11.010
    [22]
    WU Z J, GE S H, ZHANG M H, LI W, MU S C, TAO K Y. Controlled synthesis of supported nickel boride catalyst using electroless plating[J]. J Phys Chem C,2007,111:8587−8593. doi: 10.1021/jp070096k
    [23]
    PARKS G L, PEASE M L, BURNS A W, LAYMAN K A, BUSSELL M E, WANG X, HANSON J, RODRIGUEZ J A. Characterization and hydrodesulfurization properties of catalysts derived from amorphous metal-boron materials[J]. J Catal,2007,246:277−292. doi: 10.1016/j.jcat.2006.12.009
    [24]
    SKRABALAK S E, SUSLICK K S. On the possibility of metal borides for hydrodesulfurization[J]. Chem Mater,2006,18:3103−3107. doi: 10.1021/cm060341x
    [25]
    LEWANDOWSKI M. Hydrotreating activity of bulk NiB alloy in model reaction of hydrodenitrogenation of carbazole[J]. Appl Catal B: Environ,2015,168:322−332.
    [26]
    ZENG M, WANG H, ZHAO C, WEI J K, QI K, WANG W L, BAI X D. Nanostructured amorphous nickel boride for high efficiency electrocatalytic hydrogen evolution over a broad pH range[J]. ChemCatChem,2016,8:708−712.
    [27]
    LI Z P, SHANG J P, SU C N, ZHANG S B, WU M X, GUOY. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions[J]. J Fuel Chem Technol,2018,46(4):473−478. doi: 10.1016/S1872-5813(18)30021-5
    [28]
    DENG K, REN T, XU Y, DENG K, REN T L, XU Y, LIU S L, DAI Z C, WANG Z Q, LI X N, LIANG WANG, WANG H J. Crystalline core-amorphous shell heterostructures: Epitaxial assembly of NiB nanosheets onto PtPd mesoporous hollow nanopolyhedra for enhanced hydrogen evolution electrocatalysis[J]. J Mater Chem A,2020,8(18):8927−8933. doi: 10.1039/D0TA02537B
    [29]
    LEGRAND J, TALEB A, GOTA S, GUITTET M J, PETIT C. Synthesis and XPS characterization of nickel boride nanoparticles[J]. Langmuir,2002,18:4131−4137. doi: 10.1021/la0117247
    [30]
    HUANG T, SHEN T, GONG M, DENG S F, LAI C L, LIU X P, ZHAO T H, TENG L, WANG D L. Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction[J]. Chin J Catal,2019,40(12):1867−1873. doi: 10.1016/S1872-2067(19)63331-0
    [31]
    ZHANG R, LIU H, WANG C, WANG L C, YANG Y J, GUO Y H. Electroless plating of transition metal boride with high boron content as superior HER electrocatalyst[J]. ChemCatChem,2020,12(11):3068−3075.
    [32]
    BOCKRIS J O M, POTTER E C. The mechanism of the cathodic hydrogen evolution reaction[J]. J Electrochem Soc,1952,99:169−186. doi: 10.1149/1.2779692
    [33]
    POPCZUN E J, MCKONE J R, READ C G, BIACCHI A J, WILTROUT A M, LEWIS N S, SCHAAK R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. J Am Chem Soc,2013,135(25):9267−9270. doi: 10.1021/ja403440e
    [34]
    PAN Y, HU W, LIU D, LIU Y, LIU C. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction[J]. J Mater Chem A,2015,3(24):13087−13094. doi: 10.1039/C5TA02128F
    [35]
    PAN Y, LIU Y, LIU C. Nanostructured nickel phosphide supported on carbon nanospheres: Synthesis and application as an efficient electrocatalyst for hydrogen evolution[J]. J Power Sources,2015,285:169−177. doi: 10.1016/j.jpowsour.2015.03.097
    [36]
    LIN Y, ZHANG J, PAN Y, LIU Y. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution[J]. Appl Surf Sci,2017,422:828−837. doi: 10.1016/j.apsusc.2017.06.102
    [37]
    PAN Y, YANG N, CHEN Y, LIN Y, LI Y, LIU Y, LIU C. Nickel phosphide nanoparticles nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity[J]. J Power Sources,2015,297:45−52. doi: 10.1016/j.jpowsour.2015.07.077
    [38]
    WANG P, PU Z, LI Y, WU L, TU Z, JIANG M, KOU Z, SAANA AMIINU I, MU S. Iron-doped nickel phosphide nanosheet arrays: An efficient bifunctional electrocatalyst for water splitting[J]. ACS Appl Mater Interfaces,2017,9(31):26001−26007. doi: 10.1021/acsami.7b06305
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1220) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return