Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHANG Pei-pei, ATCHIMARUNGSRI Thachapan. Direct synthesis of LPG from syngas over Cu modified FeMg@SiO2 nano-level core@shell catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 656-664. doi: 10.1016/S1872-5813(22)60064-1
Citation: ZHANG Pei-pei, ATCHIMARUNGSRI Thachapan. Direct synthesis of LPG from syngas over Cu modified FeMg@SiO2 nano-level core@shell catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 656-664. doi: 10.1016/S1872-5813(22)60064-1

Direct synthesis of LPG from syngas over Cu modified FeMg@SiO2 nano-level core@shell catalyst

doi: 10.1016/S1872-5813(22)60064-1
Funds:  The project was supported by the CCUS Project of China National Offshore Oil Corporation (KJGG-2022-12-CCUS-030401)
More Information
  • Corresponding author: Tel: 0951-2062323, E-mail: thachapan@126.com
  • Received Date: 2022-06-08
  • Accepted Date: 2022-09-14
  • Rev Recd Date: 2022-07-26
  • Available Online: 2022-10-17
  • Publish Date: 2023-05-15
  • Direct synthesis of liquefied petroleum gas from syngas via Fischer-Tropsch synthesis route was systematically investigated over a nano-level core@shell catalyst. We introduced an incorporation of FeMg catalyst into mesoporous silica shell, with a further modification of Cu particles on the silica surface. The modified Cu/FeMg@SiO2 nano core-shell catalysts were synthesized by the combination of co-precipitation, modified sol-gel and facile impregnation methods. The as-synthesized catalysts’ physicochemical property was characterized by XRD, TEM, N2 adsorption-desorption, H2-TPR, XPS and CO2-TPD techniques. The catalytic performance of Cu/FeMg@SiO2 catalyst shows a high CO conversion of 96.6%, rather low CO2 selectivity of 21.9% and considerable LPG selectivity of 37.9%. The catalytic results indicate that the SiO2 shell restrains the formation of CH4 and contributes to increasing long-chain products. Meanwhile, the enhanced CO conversion of Cu/FeMg@SiO2 was ascribed to the active metal Cu dispersed on SiO2 shell, which also promoted olefin hydrogenation and cracking of C5+ hydrocarbons products. The proposed catalyst preparation method will provide a new strategy for the synthesis of nano level catalyst with combinations of metal- and zeolite-based catalyst.
  • loading
  • [1]
    GE Q, LI X, KANEKO H, FUJIFOMO K. Direct synthesis of LPG from synthesis gas over Pd-Zn-Cr/Pd-hybrid catalysts[J]. J Mol Catal A: Chem,2007,278(1/2):215−219. doi: 10.1016/j.molcata.2007.09.008
    [2]
    ZHAO T, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun,2006,7(9):647−650. doi: 10.1016/j.catcom.2005.11.009
    [3]
    GE Q, YU L, YUAN X, LI X, FUJIMOTO F. High performance Cu-ZnO/Pd-β catalysts for syngas to LPG[J]. Catal Commun,2008,9(2):256−261. doi: 10.1016/j.catcom.2007.06.011
    [4]
    MA X, GE Q, FANG C, MA J, XU H. Direct synthesis of LPG from syngas derived from air-POM[J]. Fuel,2011,90(5):2051−2054. doi: 10.1016/j.fuel.2011.01.003
    [5]
    LI C, YU X, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A: Gen,2014,475:155−160. doi: 10.1016/j.apcata.2014.01.025
    [6]
    ZHANG P P, YANG G H, TAN L, Ai P P, YANG R Q, TSUBAKI N. Direct synthesis of liquefied petroleum gas from syngas over H-ZSM-5 enwrapped Pd-based zeolite capsule catalyst[J]. Catal Today,2018,303:77−85.
    [7]
    LI H J, ZHANG P P, GUO L S, HE Y L, ZENG Y, THONGKAM M, NATAKARANAKUL J, KOJIMA T, REUBROYCHAROEN P, VITIDSANT T, YANG G H, TSUBAKI N. A well-defined core-shell-structured capsule catalyst for direct conversion of CO2 into liquefied petroleum gas[J]. ChemSusChem,2020,13:2060−2065. doi: 10.1002/cssc.201903576
    [8]
    LU P, SUN J, SHEN D M, YANG R, XING C, LU C X, TSUBAKI N, SHAN S D. Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface[J]. Appl Energy,2018,209:1−7. doi: 10.1016/j.apenergy.2017.10.068
    [9]
    PEDERSEN E, SVENUM I, BLEKKAN E. Mn promoted Co catalysts for Fischer-Tropsch production of light olefins -An experimental and theoretical study[J]. J Catal,2018,361:23−32. doi: 10.1016/j.jcat.2018.02.011
    [10]
    XING C, SUN J, YANG G H, SHEN W, TAN L, ZHU P, WEI Q, LI J, KYODO M, YANG R, YONEYAMA Y, TSUBAKI N. Tunable isoparaffin and olefin synthesis in Fischer-Tropsch synthesis achieved by composite catalyst[J]. Fuel Process Technol,2015,136:68−72. doi: 10.1016/j.fuproc.2014.10.001
    [11]
    XING C, SUN J, CHEN Q, YANG G, MURANAKA N, LU P, SHEN W, ZHU P, WEI Q, LI J, MAO J, YANG R, TSUNAKI N. Tunable isoparaffin and olefin yields in Fischer-Tropsch synthesis achieved by a novel iron-based micro-capsule catalyst[J]. Catal Today,2015,251:41−46. doi: 10.1016/j.cattod.2014.10.022
    [12]
    HERRANZ H, ROJAS S, OJEDA M, PEREZ-ALONSO F, TERREROS P, PIROTA K, FIERRO J. Synthesis, structural features, and reactivity of Fe-Mn mixed oxides prepared by microemulsion[J]. Chem Mater,2006,18(9):2364−2375. doi: 10.1021/cm052568i
    [13]
    HERRANZ H, ROJAS S, PEREZ-ALONSO F, OJEDA M, TERREROS P, FIERRO J. Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology[J]. Appl Catal A: Gen,2006,311:66−75. doi: 10.1016/j.apcata.2006.06.007
    [14]
    WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174. doi: 10.1038/ncomms15174
    [15]
    YANG Z, LUO M S, LIU Q L, SHI B C. In situ XRD and Raman investigation of the activation process over K-Cu-Fe/SiO2 catalyst for Fischer-Tropsch synthesis reaction[J]. Catal Lett,2020,150:2437−2445. doi: 10.1007/s10562-020-03147-6
    [16]
    GAO X H, ZHANG J L, CHEN N, MAQ X, FAN S B, ZHAO T S, TSUBAKI N. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chin J Catal,2016,37(4):510−516. doi: 10.1016/S1872-2067(15)61051-8
    [17]
    SUN S, ZENG H, ROBINSON B, RAOUX S, RICE M, WANG S, LI G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles[J]. J Am Chem Soc,2004,126(1):273−279. doi: 10.1021/ja0380852
    [18]
    CROCELLA V, CERRATO G, MAGNACCA G, MORTERRA C, CAVANA F, COCCHI S, PASSERI S, SCAGLIARINI D, FLEGO C, PEREGO C. The balance of acid, basic and redox sites in Mg/Me-mixed oxides: The effect on catalytic performance in the gas-phase alkylation of m-cresol with methanol[J]. J Catal,2010,270(1):125−135. doi: 10.1016/j.jcat.2009.12.011
    [19]
    LEE Y, LEE J, BEA C J, PARK J G, NOH H J, PARK J H, HYEON T. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions[J]. Adv Funct Mater,2005,15(3):503−509. doi: 10.1002/adfm.200400187
    [20]
    ÖZKARA-AYDINOGLU S, ATAC Ö, GUL Ö F, KINAYYIGIT S, SAL S, BARANAK M, BOZ I. α-Olefin selectivity of Fe-Cu-K catalysts in Fischer-Tropsch synthesis: Effects of catalyst composition and process conditions[J]. Chem Eng J,2012,181–182:581−589.
    [21]
    BAO J, HE J, ZHANG Y, YONEYAMA Y, TSUBAKI N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angew Chem,2008,120:359−362. doi: 10.1002/ange.200703335
    [22]
    LI W, HE Y, LI H, SHEN D, XING C, YANG R. Spatial confinement effects of zeolite-based micro-capsule catalyst on tuned Fischer-Tropsch synthesis product distribution[J]. Catal Commun,2017,98:98−101. doi: 10.1016/j.catcom.2017.05.008
    [23]
    YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc,2010,132:8129−8136. doi: 10.1021/ja101882a
    [24]
    MOREL A, NIKITENKO S, GIONNET K, WATTIAUX A, LAI-KEE-HIM J, LABRUGERE C. Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties[J]. ACS Nano,2008,2(5):847−856. doi: 10.1021/nn800091q
    [25]
    PARK J, LEE H, JUNG H, KIM M, KIM H, PARK K, SONG H. Gram-scale synthesis of magnetically separable and recyclable Co@SiO2 yolk-shell nanocatalysts for phenoxycarbonylation reactions[J]. ChemCatChem,2011,3(4):755−760. doi: 10.1002/cctc.201000318
    [26]
    XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun,2011,12(7):589−592. doi: 10.1016/j.catcom.2010.12.013
    [27]
    XU Y F, LI X Y, GAO J H, WANG J, MA G Y, WEN X D, LI Y W, DING M Y. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [28]
    ZHANG Y, QING M, WANG H, LIU X W, LIU S Y, WAN H L, LI L G, GAO X, YANG Y, WEN X D, LI Y W. Comprehensive understanding of SiO2-promoted Fe Fischer-Tropsch synthesis catalysis: Fe-SiO2 interaction and beyond[J]. Catal Today,2021,368:96−105. doi: 10.1016/j.cattod.2020.02.026
    [29]
    ZHANG Y L, WANG T J, MA L L, SHI N, ZHOU D F, LI X J. Promotional effects of Mn on SiO2-encapsulated iron-based spindles for catalytic production of liquid hydrocarbons[J]. J Catal,2017,350:41−47. doi: 10.1016/j.jcat.2017.02.019
    [30]
    JANSSENS W, MAKSHINA E, VANELDEREN P, CLIPPEL F, HOUTHOOFD K, KERKHOFS S, MARTENS J, JACOBS P, SEL B. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene[J]. ChemSusChem,2015,8(6):994−1008. doi: 10.1002/cssc.201402894
    [31]
    PRADEEP A, PRIYADHARSINI P, CHANDRASEKARAN G. Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study[J]. J Magn Magn Mater,2008,320(21):2774−2779.
    [32]
    DJAIDJA A, MESSAOUDI H, KADDECHE D, BARAMA A. Study of Ni-M/MgO and Ni-M-Mg/Al (M=Fe or Cu) catalysts in the CH4−CO2 and CH4−H2O reforming[J]. Int J Hydrogen Energy,2015,40(14):4989−4995. doi: 10.1016/j.ijhydene.2014.12.106
    [33]
    XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Solvothermally derived Co3O4@m-SiO2 nanocomposites for Fischer-Tropsch synthesis[J]. Catal Commun,2011,12(5):380−383. doi: 10.1016/j.catcom.2010.10.010
    [34]
    LIN Q H, ZHANG Q D, YANG G H, CHEN Q J, LI J, WEI Q H, TAN Y S, WAN H L, TSUBAKI N. Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5−C11 iso-paraffins from syngas[J]. J Catal,2016,344:378−388. doi: 10.1016/j.jcat.2016.10.012
    [35]
    TAN L, ERDENEBAATAR O, LIU G G, YAMANE N, AI P P, OTANI A, YONEYAMA Y, YANG G H, TSUBAKI N. Catalytic cracking of 4-(1-naphthylmethyl) bibenzyl in sub- and supercritical water[J]. Fuel Process Technol,2017,160:34−38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1964) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return