Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
MAO Yu-zhong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue, GUO Xiao-jun. Progress in the thermo-catalytic hydrogenation of CO2 to ethanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1514-1528. doi: 10.1016/S1872-5813(22)60065-3
Citation: MAO Yu-zhong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue, GUO Xiao-jun. Progress in the thermo-catalytic hydrogenation of CO2 to ethanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1514-1528. doi: 10.1016/S1872-5813(22)60065-3

Progress in the thermo-catalytic hydrogenation of CO2 to ethanol

doi: 10.1016/S1872-5813(22)60065-3
Funds:  The project was supported by National Natural Science Foundation of China (22268039, 21865031)
  • Received Date: 2022-09-16
  • Accepted Date: 2022-10-16
  • Rev Recd Date: 2022-10-08
  • Available Online: 2022-10-24
  • Publish Date: 2023-10-10
  • The chemical conversion of CO2 is considered as one of the effective measures to reduce carbon emission, where breakthroughs have been made in the thermo-catalytic hydrogenation of CO2 to ethanol in recent years. However, the synthesis of ethanol from CO2 still suffers from some problems such as low ethanol yield and abundant by-products. In this paper, the research progress made in the thermo-catalytic hydrogenation of CO2 to ethanol was reviewed. The performance of various catalysts with zeolites, metal oxides, perovskites, silica, organic frameworks and carbon-based materials as the support was evaluated and the synergistic effect of different metals on the CO2 conversion and the intervention of various active species on the reaction were analyzed. Accordingly, the catalyst systems that can effectively promote the adsorption and activation of CO2 and the coupling of C–C bond were summarized. Finally, the appropriate conditions as well as possible reaction mechanism for the CO2 hydrogenation to ethanol were proposed. The insight shown in this paper should be beneficial to designing efficient catalysts, optimizing the reaction conditions and understanding the mechanism of CO2 hydrogenation to ethanol in the future.
  • loading
  • [1]
    ZHANG S, WU Z X, LIU X F, HUA K M, SHAO Z L, WEI B Y, HUANG C J, WANG H, SUN Y H. A Short review of recent advances in direct CO2 hydrogenation to alcohols[J]. Top Catal, 2021, 64(5/6): 371–394.
    [2]
    LU F X, CHEN X, WANG W, ZHANG Y. Adjusting the CO2 hydrogenation pathway via the synergic effects of iron carbides and iron oxides[J]. Catal Sci Technol,2021,11(23):7694−7703. doi: 10.1039/D1CY01758F
    [3]
    PATRIZIO P, FAJARDY M, BUI M, DOWELL N M. CO2 mitigation or removal: The optimal uses of biomass in energy system decarbonization[J]. Science,2021,24(7):102765. doi: 10.1016/j.isci.2021.102765
    [4]
    BEDIAKO B A, QIAN Q L, HAN B X. Synthesis of C2 + chemicals from CO2 and H2 via C–C bond formation[J]. Accounts Chem Res,2021,54(10):2467−2476. doi: 10.1021/acs.accounts.1c00091
    [5]
    王桂硕. CO2加氢制乙醇催化剂的结构构建及反应机理研究[D]. 天津: 天津大学, 2019.

    WANG Gui-shuo. Study on structural construction and reaction mechanism of catalyst for CO2 hydrogenation to ethanol[D]. Tianjin: Tianjin University, 2019.
    [6]
    INUI T, YAMAMOTO T, INOUE M, HARA H, TAKEGUCHI T, KIM J B. Highly effective synthesis of ethanol by CO2-hydrogenation on well balanced multi-functional FT-type composite catalysts[J]. Appl Catal A: Gen, 1998, 186 (1/2): 395–406.
    [7]
    STRANGES A. History of the Fischer-Tropsch synthesis in Germany 1926–45[J]. Stud Surf Sci Catal,2007,163(7):1−27.
    [8]
    STEINBERG M. History of CO2 greenhouse gas mitigation technologies[J]. Energy Convers Manage, 1992, 33 (5–8): 311–315.
    [9]
    DING L P, SHI T T, GU J, CUI Y, ZHANG Z Y, YANG C J, CHEN T, LIN M, WANG P, XUE N H, PENG L M, GUO X F, ZHU Y, CHEN Z X, DING W P. CO2 hydrogenation to ethanol over Cu@Na-Beta[J]. Chem,2020,6(10):2673−2689. doi: 10.1016/j.chempr.2020.07.001
    [10]
    ZHANG J W, SEWELL C, HUANG H W, LIN Z Q. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization[J]. Adv Energy Mater,2021,11(47):2102767. doi: 10.1002/aenm.202102767
    [11]
    DONALDSON L. 2D molecular sieve with range of uses[J]. Mater Today,2022,55:2−3. doi: 10.1016/j.mattod.2022.05.005
    [12]
    PUJADÓ P R, RABÓ J A, ANTOS G J, GEMBICKI S A. Industrial catalytic applications of molecular sieves[J]. Catal Today,1992,13(1):113−141. doi: 10.1016/0920-5861(92)80191-O
    [13]
    CHEN Y, ZHU X X, WANG X P, SU Y P. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite[J]. Chem Eng J,2021,419:129641. doi: 10.1016/j.cej.2021.129641
    [14]
    WANG C T, ZHANG J, QIN G Q, WANG L, ZUIDEMA E, YANG Q, DANG S H, YANG C G, XIAO J P, MENG X J, MESTERS C, XIAO F S. Direct conversion of syngas to ethanol within zeolite crystals[J]. Chem,2020,6(3):646−657. doi: 10.1016/j.chempr.2019.12.007
    [15]
    REGALADOVERA C, MANAVI N, ZHOU Z. Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO2 hydrogenation[J]. Chem Eng J,2021,426:131767. doi: 10.1016/j.cej.2021.131767
    [16]
    ZHANG M H, YAO R, JIANG H X, LI G M, CHEN Y F. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu (111) surface[J]. Appl Surf Sci,2017,412:342−349. doi: 10.1016/j.apsusc.2017.03.222
    [17]
    HU S L, LI W. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science,2021,374(6573):1360−1365. doi: 10.1126/science.abi9828
    [18]
    YANG C S, MU R T, WANG G S, SONG J M, TIAN H, ZHAO Z J, GONG J L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation[J]. Chem Sci,2019,10:3161−3167. doi: 10.1039/C8SC05608K
    [19]
    佟小萌, 韩松洺. 负载型金属纳米催化剂对催化反应性能影响的研究进展[J]. 云南化工,2021,48(5):12−13. doi: 10.3969/j.issn.1004-275X.2021.05.05

    TONG Xiao-meng, HAN Song-ming. Research progress on the effect of supported metal nano-catalysts on catalytic reaction performance[J]. Yunnan ChemTechnol,2021,48(5):12−13. doi: 10.3969/j.issn.1004-275X.2021.05.05
    [20]
    BAI S X, SHAO Q, WANG P T, DAI Q G, WANG X Y, HUANG X Q. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles[J]. J Am Chem Soc,2017,139(20):6827−6830. doi: 10.1021/jacs.7b03101
    [21]
    ZHENG J N, AN K, WANG J M, LI J, LIU Y. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst[J]. J Fuel Chem Technol,2019,47(6):697−708. doi: 10.1016/S1872-5813(19)30031-3
    [22]
    WANG D, BI Q Y, YIN G H, ZHAO W L, HUANG F Q, XIE X M, JIANG M H. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts[J]. Chem Commun,2016,52(99):14226−14229. doi: 10.1039/C6CC08161D
    [23]
    LOU Y, JIANG F, ZHU W, WANG L, YAO T Y, WANG S S, YANG B, YANG B, ZHU Y F, LIU X H. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol[J]. Appl Catal B: Environ,2021,291:120122. doi: 10.1016/j.apcatb.2021.120122
    [24]
    YE X, YANG C Y, PAN X L, MA J G, ZHANG Y R, REN Y J, LIU X Y, LI L, HUANG Y Q. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst[J]. J Am Chem Soc,2020,142(45):19001−19005. doi: 10.1021/jacs.0c08607
    [25]
    WEI J, YAO R W, HAN Y, GE Q J, SUN J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev,2021,50(19):10764−10805. doi: 10.1039/D1CS00260K
    [26]
    XU M J, LIU X L, SONG G Y, CAI Y Y, SHI B F, LIU Y T, DING X X, YANG Z X, TIAN P F, CAO C X, XU J. Regulating iron species compositions by Fe-Al interaction in CO2 hydrogenation[J]. J Catal,2022,413:331−341. doi: 10.1016/j.jcat.2022.06.030
    [27]
    DU H, ZHU H J, LIU T, ZHAO Z A, CHEN X K, DONG W D, LU W, LUO W T, DING Y J. Higher alcohols synthesis via CO hydrogenation on Fe-promoted Co/AC catalysts[J]. Catal Today,2017,281:549−558. doi: 10.1016/j.cattod.2016.05.023
    [28]
    XU D, YANG H Q, HONG X L, LIU G L, TSANG S C E. Tandem catalysis of direct CO2 hydrogenation to higher alcohols[J]. ACS Catal,2021,11(15):8978−8984. doi: 10.1021/acscatal.1c01610
    [29]
    WANG Y Q, ZHANG X X, HONG X L, LIU G L. Sulfate-promoted higher alcohol synthesis from CO2 hydrogenation[J]. ACS Sustainable Chem Eng,2022,10(27):8980−8987. doi: 10.1021/acssuschemeng.2c02743
    [30]
    WANG K, HAN C, SHAO Z P, QIU J H, WANG S B, LIU S M. Perovskite oxide catalysts for advanced oxidation reactions[J]. Adv Funct Mater,2021,31:2102089. doi: 10.1002/adfm.202102089
    [31]
    HOU Y H, WANG X Y, CHEN M, GAO X Y, LIU Y Z, GUO Q J. Sr1-xKxFeO3 perovskite catalysts with enhanced RWGS reactivity for CO2 hydrogenation to light olefins[J]. Atmosphere,2022,13(5):760. doi: 10.3390/atmos13050760
    [32]
    AN K, ZHANG S R, WANG J M, LIU Q, ZHANG Z Y, LIU Y. A highly selective catalyst of Co/La4Ga2O9 for CO2 hydrogenation to ethanol[J]. J Energy Chem,2021,56:486−495. doi: 10.1016/j.jechem.2020.08.045
    [33]
    KUSAMA H, OKABE K, SAYAMA K, ARAKAWA H. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts[J]. Catal Today,1996,28:261−266. doi: 10.1016/0920-5861(95)00246-4
    [34]
    KUSAMA H, OKABE K, SAYAMA K, ARAKAWA H. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts[J]. Energy,1997,22:343−348. doi: 10.1016/S0360-5442(96)00095-3
    [35]
    刘启予, 范炜. 介孔分子筛制备技术新进展——二次合成、超分子自组装和介孔生成剂法(英文)[J]. 高等学校化学学报,2021,42(1):60−73.

    LIU Qi-yu, FAN Wei. Recent advances in the synthesis of mesoporous zeolites by post-synthetic method, supramolecular self-assembly and mesopore generation agent[J]. Chem J Chin Univ,2021,42(1):60−73.
    [36]
    SHAWABKEH R, FAQIR N, RAWAJFEH K, HUSSIEN I A, HAMZA A. Adsorption of CO2 on Cu/SiO2 nano-catalyst: Experimental and theoretical study[J]. Appl Surf Sci,2022,586:152726. doi: 10.1016/j.apsusc.2022.152726
    [37]
    GORYACHEV A, PUSTOVARENKO A, SHETRK G, ALHAJRI N S, JAMAL A, ALBUALI M, KOPPEN L, KHAN S, RUSSKIKB A, RAMIREZ A, SHOINKHOROVA T, HENSEN E, GASCON J. A multi-parametric catalyst screening for CO2 hydrogenation to ethanol[J]. ChemCatChem,2021,13(14):3324−3332. doi: 10.1002/cctc.202100302
    [38]
    AN K, ZHANG S, WANG H, LI N Y, ZHANG Z Y, LIU Y. Co0-Coδ + active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis[J]. Chem Eng J,2022,433:134606. doi: 10.1016/j.cej.2022.134606
    [39]
    LI X L, YANG G H, ZHANG M, GAO X F, XIE H J, BAI Y X, WU Y Q, PAN J X, TAN Y S. Insight into the correlation between Cu species evolution and ethanol selectivity in the direct ethanol synthesis from CO hydrogenation[J]. ChemCatChem,2019,11(3):1123−1130. doi: 10.1002/cctc.201801888
    [40]
    ZHANG Q, WANG S, DONG M, FAN W B. CO2 hydrogenation on metal-organic frameworks-based catalysts: A mini review[J]. Front Chem,2022,10:956223. doi: 10.3389/fchem.2022.956223
    [41]
    QIN Z, LI H, YANG X F, CHEN L Y, LI Y W, SHEN K. Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation[J]. Appl Catal B: Environ,2022,307:121163. doi: 10.1016/j.apcatb.2022.121163
    [42]
    LU X F, LIU Y, HE Y R, KUHN A N, SHIH P C, SUN C J, WEN X D, SHI C, YANG H. Cobalt-based nonprecious metal catalysts derived from metal-organic frameworks for high-rate hydrogenation of carbon dioxide[J]. ACS Appl Mater Inter,2019,11(31):27717−27726. doi: 10.1021/acsami.9b05645
    [43]
    ZENG L, CAO Y, LI Z, DAI Y H, WANG Y K, AN B, ZHANG J Z, LI H, ZHOU Y, LIN W B, WANG C. Multiple cuprous centers supported on a titanium-based metal-organic framework catalyze CO2 hydrogenation to ethylene[J]. ACS Catal,2021,11(18):11696−11705. doi: 10.1021/acscatal.1c01939
    [44]
    GUTTEROD E, LAZZARINI A, FJERMESTAD T, KAUR G, MANZOLI M, BORDIGA S, SVELLE S, LILLERUD K P, SKULASON E, ØIEN S, NOVA A, OLSBYE U. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal-organic framework[J]. J Am Chem Soc,2020,142(2):999−1009. doi: 10.1021/jacs.9b10873
    [45]
    FAN Y, ZHANG J, SHEN Y, ZHENG B, ZHANG W N, HUO F W. Emerging porous nanosheets: From fundamental synthesis to promising applications[J]. Nano Res,2021,14:1−28. doi: 10.1007/s12274-020-3082-4
    [46]
    CHOE K, ZHENG F B, WANG H, YUAN Y, ZHAO W S, XUE G G, QIU X Y, RI X, SHI X H, WANG Y L, LI G D, TANG Z Y. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks[J]. Angew Chem Int Ed,2020,59:3650−3657. doi: 10.1002/anie.201913453
    [47]
    SHAO S X, CUI C Q, TANG Z Y, LI G D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products[J]. Nano Res, 2022, 15(12): 10110−10133.
    [48]
    NIU T C. Old materials with new properties II: the metal carbides[J]. Nano Today,2018,18:12−14. doi: 10.1016/j.nantod.2017.10.001
    [49]
    ZHANG H Y, HAN H, XIAO L F, WU W. Highly selective synthesis of ethanol via CO2 hydrogenation over CoMoCx catalysts[J]. ChemCatChem,2021,13(14):3333−3339. doi: 10.1002/cctc.202100204
    [50]
    YE X, MA J G, YU W G, PAN X L, YANG C Y, WANG C, LIU Q G, HUANG Y Q. Construction of bifunctional single-atom catalysts on the optimized β-Mo2C surface for highly selective hydrogenation of CO2 into ethanol[J]. J Energy Chem,2022,67:184−192. doi: 10.1016/j.jechem.2021.10.017
    [51]
    高钊. 改性蒙脱土负载钴催化剂浆态床费—托合成反应性能的研究[D]. 西安: 陕西师范大学, 2017.

    GAO Zhao. Performance study of modified montmorillonite-loaded cobalt catalyst slurry bed Fischer-Tropsch synthesis reaction[D]. Xian: Shaanxi Normal University, 2017.
    [52]
    ZHOU H, CHEN Z X, KOUNTOUPI E, TSOUKALOU A, ABDALA P M, FLORIAN P, FEDOROV A, MULLER C R. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation[J]. Nat Commun,2021,12(1):5510. doi: 10.1038/s41467-021-25784-0
    [53]
    LI Z, WU Y. 2D early transition metal carbides (MXenes) for catalysis[J]. Small,2019,15(29):e1804736. doi: 10.1002/smll.201804736
    [54]
    CAPARROS F, SOLER L, ROSSELL M, ANGURELL I, PICCOLO L, ROSSELL O, LLORCA J. Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst[J]. ChemCatChem,2018,10(11):2365−2369. doi: 10.1002/cctc.201800362
    [55]
    WANG L X, WANG L, ZHANG J, LIU X L, WANG H, ZHANG W, YANG Q, MA J Y, DONG X, YOO S J, KIM J G, MENG X J, XIAO F S. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J]. Angew Chem Int Ed,2018,57(21):6104−6108. doi: 10.1002/anie.201800729
    [56]
    ALI S, ALI S, TABASSUM N. A review on CO2 hydrogenation to ethanol: Reaction mechanism and experimental studies[J]. J Environ Chem Eng,2022,10(1):106962. doi: 10.1016/j.jece.2021.106962
    [57]
    KIM J, LEE S, LEE S B, CHOI M J, LEE K W. Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons[J]. Catal Today, 2006, 115(1/2/3/4): 228–234.
    [58]
    XU D, WANG Y Q, DING M Y, HONG X L, LIU G L, TSANG S C. Advances in higher alcohol synthesis from CO2 hydrogenation[J]. Chem,2021,7(4):849−881. doi: 10.1016/j.chempr.2020.10.019
    [59]
    HE Y M, LIU S L, FU W J, WANG C, MEBRAHTU C, SUN R Y, ZENG F. Thermodynamic analysis of CO2 hydrogenation to higher alcohols (C2−4OH): Effects of isomers and methane[J]. ACS Omega,2022,7(19):16502−16514. doi: 10.1021/acsomega.2c00502
    [60]
    LI M, PHAM T, KO Y, ZHAO K, ZHONG L P, LUO W, ZUTTEL A. Support-dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction[J]. ACS Sustainable Chem Eng,2022,10(4):1524−1535. doi: 10.1021/acssuschemeng.1c06935
    [61]
    ZHENG X L, GUO L, LI W L, CAO Z R, LIU N Y, ZHANG Q, XING M M, SHI Y Y, GUO J. Insight into the mechanism of reverse water-gas shift reaction and ethanol formation catalyzed by Mo6S8-TM clusters[J]. Mol Catal,2017,439:155−162. doi: 10.1016/j.mcat.2017.06.030
    [62]
    CAO A, SCHUMANN J, WANG T, ZHANG L N, XIAO J P, BOTHRA P, LIU Y, ABILD P F, NORSKOV J K. Mechanistic insights into the synthesis of higher alcohols from syngas on CuCo alloys[J]. ACS Catal,2018,8(11):10148−10155. doi: 10.1021/acscatal.8b01596
    [63]
    LIU S H, YANG C S, ZHA S J, SHARAPA D, STUDT F, ZHAO Z J, GONG J L. Moderate surface segregation promotes selective ethanol production in CO2 hydrogenation reaction over CoCu catalysts[J]. Angew Chem Int Ed,2022,61(2):e202109027.
    [64]
    CHEN W, FILOT I, PESTMAN R, HENSEN E J. Mechanism of cobalt-catalyzed CO hydrogenation: 2. Fischer-Tropsch synthesis[J]. ACS Catal,2017,7(12):8061−8071. doi: 10.1021/acscatal.7b02758
    [65]
    HE Z H, QIAN Q L, MA J, MENG Q L, ZHOU H C, SONG J L, LIU Z M, HAN B X. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem,2016,55:737−741. doi: 10.1002/anie.201507585
    [66]
    CHEN Y, CHOI S, THOMPSON L. Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C sup-ported metal catalysts[J]. J Catal,2016,343:147−156. doi: 10.1016/j.jcat.2016.01.016
    [67]
    LIU G B, YANG G H, PENG X B, WU J H, TSUBAKI N. Recent advances in the routes and catalysts for ethanol synthesis from syngas[J]. Chem Soc Rev,2022,51(13):1460−4744.
    [68]
    ZHANG F Y, CHEN K, JIANG Q M, HE S, CHEN Q J, LIU Z M, KANG J C, ZHANG Q H, WANG Y. Selective transformation of methanol to ethanol in the presence of syngas over composite catalysts[J]. ACS Catal,2022,12(14):8451−8461. doi: 10.1021/acscatal.2c01725
    [69]
    FENG S Q, LIN X S, SONG X G, MEI B B, MU J L, LI J W, LIU Y, JIANG Z, DING Y J. Constructing efficient single Rh sites on activated carbon via surface carbonyl groups for methanol carbonylation[J]. ACS Catal,2021,11(2):682−690. doi: 10.1021/acscatal.0c03933
    [70]
    ZHOU W, KANG J C, CHENG K, HE S, SHI J Q, ZHOU C, ZHANG Q H, CHEN J C, PENG L M, CHEN M S, WANG Y. Direct conversion of syngas into methyl acetate, ethanol and ethylene by relay catalysis via dimethyl ether intermediate[J]. Angew Chem Int Ed,2018,57:12012. doi: 10.1002/anie.201807113
    [71]
    ZHANG F, CHEN Z Y, FANG X D, LIU H C, LIU Y, ZHU W L. Catalytic activity of Cu/ZnO catalysts mediated by MgO promoter in hydrogenation of methyl acetate to ethanol[J]. J Energy Chem,2021,61:203−209. doi: 10.1016/j.jechem.2021.03.028
    [72]
    WANG X L, RAMIREZ P, LIAO W J, RODRIGUEZ J, LIU P. Cesium-induced active sites for C−C coupling and ethanol synthesis from CO2 hydrogenation on Cu/ZnO(0001̅) Surfaces[J]. J Am Chem Soc,2021,143(33):13103−13112. doi: 10.1021/jacs.1c03940
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1015) PDF downloads(286) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return