WANG Bixi, LIU Zeyu, WU Yabei, YANG Yanyan, YANG Song, WANG Xun, YE Zi, DONG Hongliang, ZHU Feng, YU Huanhuan, LÜ Yingying, YU Zhongliang. Multi-site Co2P catalyst derived from soybean biomass for dehydrogenation of formic acid[J]. Journal of Fuel Chemistry and Technology, 2024, 52(6): 883-892. DOI: 10.1016/S1872-5813(23)60410-4
Citation: WANG Bixi, LIU Zeyu, WU Yabei, YANG Yanyan, YANG Song, WANG Xun, YE Zi, DONG Hongliang, ZHU Feng, YU Huanhuan, LÜ Yingying, YU Zhongliang. Multi-site Co2P catalyst derived from soybean biomass for dehydrogenation of formic acid[J]. Journal of Fuel Chemistry and Technology, 2024, 52(6): 883-892. DOI: 10.1016/S1872-5813(23)60410-4

Multi-site Co2P catalyst derived from soybean biomass for dehydrogenation of formic acid

  • Formic acid (FA) is a sustainable liquid organic hydrogen carrier and the catalyst for hydrogen production from FA has received significant attention. However, the development of efficient non-noble metal catalysts still remains challenges. In this work, we provide a technologically rather simple and environmental-friendly strategy to synthesize Co2P catalyst for dehydrogenation of FA by pyrolyzing soybean powder and cobalt salt. The K-containing solid bases in catalyst could act as Lewis acid sites for the HCOO intermediate adsorption while the self-doped N could act as Lewis base sites to enhance the H+ adsorption. The P contained in soybean could combine with Co to form Co2P for H−C bond cleavage of HCOO. At a Co(NO3)2·6H2O/soybean mass ratio of 1∶15, the as prepared Co2P catalyst demonstrated a gas production rate of 237.47 mL/(g·h) and a good stability. This study provides a novel strategy to develop non-noble metal heterogeneous catalysts for FA dehydrogenation.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return