Volume 49 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
ZHANG Dian-kai, LI Yan-hong, CHANG Li-ping, ZI Chang-yu, ZHANG Yuan-qin, TIAN Guo-cai, ZHAO Wen-bo. Structural characteristics of Mile lignite and its molecular model construction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 727-734. doi: 10.19906/j.cnki.JFCT.2021026
Citation: ZHANG Dian-kai, LI Yan-hong, CHANG Li-ping, ZI Chang-yu, ZHANG Yuan-qin, TIAN Guo-cai, ZHAO Wen-bo. Structural characteristics of Mile lignite and its molecular model construction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 727-734. doi: 10.19906/j.cnki.JFCT.2021026

Structural characteristics of Mile lignite and its molecular model construction

doi: 10.19906/j.cnki.JFCT.2021026
Funds:  The project was supported by the Natural Science Foundation of China (21766013) and Analysis and Testing Foundation of Kunming University of Science and Technology (2020M20192208021)
More Information
  • Corresponding author: E-mail: liyh_2004@163.com
  • Received Date: 2020-11-20
  • Rev Recd Date: 2020-12-27
  • Available Online: 2021-03-30
  • Publish Date: 2021-06-15
  • The understanding of the structural characteristics of lignite is of very importance to the lignite utilization. The structure parameters of Mile lignite in Yunnan were ascertained via Fourier transform infrared spectroscopy, 13C solid-state nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy and ultimate analysis. The results indicate that the aromaticity and number of aromatic ring substituents of Mile lignite are 38.79% and 3, respectively. The aromatic carbon structure typically contains benzene and naphthalene, while the aliphatic carbon structure mainly includes methyl and methylene. Oxygen dominantly exists in ether oxygen, carboxyl and carbonyl; nitrogen occurs in the form of pyrrole nitrogen and pyridine nitrogen; and sulfur is mainly present in thiophenol and mercaptan. According to the analysis results, a molecular structure model of Mile lignite is constructed, with a molecular formula of C147H148O36N2S. The semi-empirical PM3 basis set and the density functional theory M06-2X were adopted to optimize the molecular configuration. The optimized model has a significant three-dimensional configuration, in which the aromatic layers are arranged irregularly in space and the aromatic rings are connected by methyl, methylene, methoxy and alicyclic rings. The simulated FT-IR spectrum and simulated 13C NMR spectrum are in great agreement with the experimental spectrum, which proves the accuracy and rationality of the molecular model of Mile lignite.
  • loading
  • [1]
    童国通, 吴荣生. 宝日希勒褐煤在合成气与复合溶剂系统下的液化性能研究[J]. 燃料化学学报,2019,47(6):661−667. doi: 10.3969/j.issn.0253-2409.2019.06.003

    TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. J Fuel Chem Technol,2019,47(6):661−667. doi: 10.3969/j.issn.0253-2409.2019.06.003
    [2]
    FENG L, ZHAO G Y, ZHAO Y Y, ZHAO M S, TANG J W. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data[J]. Fuel,2017,203:924−931. doi: 10.1016/j.fuel.2017.04.112
    [3]
    CONG X S, ZONG Z M, WEI Z H. Enrichment and identification of arylhopanes from Shengli lignite[J]. Energy Fuels,2014,28:6745−6748. doi: 10.1021/ef501105n
    [4]
    CONG X S, ZONG Z M, ZHOU Y, LI M, WANG W L, LI F G, ZHOU J, FAN X, ZHANG Y P, WEI X Y. Isolation and identification of 3-ethyl-8-methyl-2, 3-dihydro-1H-cyclopenta[a]chrysene from Shengli lignite[J]. Energy Fuels,2014,28(10):6694−6697. doi: 10.1021/ef402403y
    [5]
    MOCHIDA I, OKUMA O, YOON S H. Chemicals from direct coal liquefaction[J]. Chem Rev,2014,114(3):1637−72. doi: 10.1021/cr4002885
    [6]
    冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报,2019,70(4):1522−1531.

    FENG Wei, GAO Hong-feng, WANG Gui, XU Jing-qin, LI Zhuang-mei, LI Ping, BAI Hong-cun, GUO Qing-jie. Molecular model and pyrolysis simulation of Zaoquan coal[J]. J Chem Ind Eng,2019,70(4):1522−1531.
    [7]
    葛涛, WANG Meng, 李芬, 闵凡飞, 张明旭. 高阳炼焦煤碳、氧结构研究与光谱学表征[J]. 煤炭学报,2021,46(3):1024−1031. doi: 10.13225/j.cnki.jccs.2019.1693

    GE Tao, WANG Meng, LI Fen, MIN Fan-fei, ZHANG Mingxu. Study and characterize of carbon & oxygen structure of Gaoyang coking coal[J]. J China Coal Soc,2021,46(3):1024−1031. doi: 10.13225/j.cnki.jccs.2019.1693
    [8]
    LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel,2015,153(1):176−182.
    [9]
    张帅, 马汝嘉, 刘路, 张浩, 刘钦甫. 扎鲁特地区无烟煤分子结构特征和模型构建[J]. 煤田地质与勘探,2020,48(1):62−69. doi: 10.3969/j.issn.1001-1986.2020.01.009

    ZHANG Shuai, MA Ru-jia, LIU Lu, ZHANG Hao, LIU Qin-fu. Molecular structure characteristics and model construction of anthracite in Jarud[J]. Coal Geol Explor,2020,48(1):62−69. doi: 10.3969/j.issn.1001-1986.2020.01.009
    [10]
    MATHEWS J P, CHAFFEE A L. The molecular representations of coal - A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [11]
    LIN H L, LI K J, ZHANG X W, WANG H X. Structure characterization and model construction of Indonesian brown coal[J]. Energy Fuels,2016,30(5):3809−3814. doi: 10.1021/acs.energyfuels.5b02696
    [12]
    LIN H L, LIAN J, LIU Y P, XUE Y, YAN S, HAN S, WEI W. Comprehensive study of structure model, pyrolysis and liquefaction behaviour of Heidaigou lignite and its liquefied oil[J]. Fuel,2019,240(15):84−91.
    [13]
    相建华, 曾凡桂, 李彬, 张莉, 李美芬, 梁虎珍. 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002

    XIANG Jian-hua, ZENG Fan-gui, LI Bin, ZHANG Li, LI Mei-fen, LIANG Hu-zhen. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002
    [14]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Wallingford CT: Gaussian Inc., 2009.
    [15]
    ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor Chem Acc,2008,120:215−241. doi: 10.1007/s00214-007-0310-x
    [16]
    王永刚, 周剑林, 陈艳巨, 胡秀秀, 张书, 林雄超. 13C固体核磁共振分析煤中含氧官能团的研究[J]. 燃料化学学报,2013,41(12):1422−1426.

    WANG Yong-gang, ZHOU Jian-lin, CHEN Yan-ju, HU Xiu-xiu, ZHANG Shu, LIN Xiong-chao. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. J Fuel Chem Technol,2013,41(12):1422−1426.
    [17]
    陈丽诗, 王岚岚, 潘铁英, 周扬, 张媛媛, 张德详. 固体核磁碳结构参数的修正及其在煤结构分析中的应用[J]. 燃料化学学报,2017,45(10):1153−1163. doi: 10.3969/j.issn.0253-2409.2017.10.001

    CHEN Li-shi, WANG Lan-lan, PAN Tie-ying, ZHOU Yang, ZHANG Yuan-yuan, ZHANG De-xiang. Calibration of solid state NMR carbon structural parameters and application in coal structure analysis[J]. J Fuel Chem Technol,2017,45(10):1153−1163. doi: 10.3969/j.issn.0253-2409.2017.10.001
    [18]
    DING D, LIU G, FU B. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid-state 13C NMR[J]. Fuel,2019,245(1):174−180.
    [19]
    JING Z H, SANDRA R, EKATERINA S, LI M R, WOOD B. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures[J]. Int J Coal Geol,2019,201:1−13. doi: 10.1016/j.coal.2018.11.017
    [20]
    OKOLO G N, NEOMAGUS H W J P, EVERSON R C, ROBERTS M J, BUNT J R, SAKUROVS R, MATHEWS J P. Chemical-structural properties of South African bituminous coals: Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel,2015,158(15):779−792.
    [21]
    WANG Y G, WEI X Y, WANG S K, LI Z K, LI P. Structural evaluation of Xiaolongtan lignite by direct chacracterization and pyrolytic analysis[J]. Fuel Process Technol,2016,144:248−254. doi: 10.1016/j.fuproc.2015.12.034
    [22]
    JIANG J Y, YANG W H, CHENG Y P, LIU Z D, ZHANG Q, ZHAO K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel,2019,239:559−572. doi: 10.1016/j.fuel.2018.11.057
    [23]
    TIAN B, QIAO Y Y, TIAN Y Y, XIE K C, LIU Q, ZHOU H F. FTIR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent[J]. Fuel Process Technol,2016,154:210−218. doi: 10.1016/j.fuproc.2016.08.035
    [24]
    梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报,2014,42(2):129−137.

    LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol,2014,42(2):129−137.
    [25]
    WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LIU X K. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis,2013,100:75−80. doi: 10.1016/j.jaap.2012.11.021
    [26]
    GENG W, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel,2009,88(1):139−144. doi: 10.1016/j.fuel.2008.07.027
    [27]
    LIU F R, LI W, GUO H Q, LI B Q, BAI Z Q, HU R S. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface[J]. J Fuel Chem Technol,2011,39(2):81−84. doi: 10.1016/S1872-5813(11)60011-X
    [28]
    葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析,2017,37(8):2146−2152.

    GE Tao, ZHANG Ming-xu, MA Xiang-mei. XPS and FTIR spectroscopy characterization about the structure of coking coal in Xinyang[J]. Spectrosc Spect Anal,2017,37(8):2146−2152.
    [29]
    LIU F J, WEI X Y, GUI J, LI P, WANG Y G, LI W T, ZONG Z M, FAN X, ZHAO Y P. Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation[J]. Fuel Process Technol,2014,126:199−206. doi: 10.1016/j.fuproc.2014.05.004
    [30]
    BUCKLEY A N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy[J]. Fuel Process Technol,1994,38(3):165−179. doi: 10.1016/0378-3820(94)90046-9
    [31]
    KELEMEN S R, AFEWORKI M, GORBATY M L, COHEN A D. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods[J]. Energy Fuels,2002,16(6):1450−1462. doi: 10.1021/ef020050k
    [32]
    KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel,2004,83:259−265. doi: 10.1016/j.fuel.2003.08.004
    [33]
    GENG W H, KUMABE Y, NAKAJIMA T, OHKI A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel,2009,88(4):644−649. doi: 10.1016/j.fuel.2008.09.025
    [34]
    YANG Y C, TAO X X, HE H, XU N, TANG L F, WANG S W, GUO J F, CHEN L, YANG Z. X-ray photoelectron spectroscopy study on the chemical forms of S, C and O in coal before and after microwave desulphurization[J]. Int J Oil Gas Coal Technol,2017,15(3):267−286. doi: 10.1504/IJOGCT.2017.084444
    [35]
    SHI K Y, GUI X H, TAO X X, LONG J, JI Y H. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy Fuels,2015,29(6):3566−3572. doi: 10.1021/ef502859r
    [36]
    NOMURA M, ARTOK L, MURATA S, YAMAMOTO A, HAMA H, GAO H, KIDENA K. Structural evaluation of Zao Zhuang coal[J]. Energy Fuels,1998,12(3):512−23. doi: 10.1021/ef9701448
    [37]
    秦志宏, 卜良辉, 李祥. 基于炼焦煤族组成和结构参数的焦炭质量预测模型及其成焦机理[J]. 燃料化学学报,2018,46(12):1409−1422.

    QIN Zhi-hong, BU Liang-hui, LI Xiang. Prediction model for coke quality and mechanism based on coking coal composition and structure parameters[J]. J Fuel Chem Technol,2018,46(12):1409−1422.
    [38]
    葛涛, 李洋, WANG Meng, 李芬, 张明旭. 山西高硫气肥煤结构表征与分子模型构建[J]. 光谱学与光谱分析,2020,40(11):3373−3378.

    GE Tao, LI Yang, WANG Meng, LI Fen, ZHANG Ming-xu. Structural characterization and molecular model construction of gas-fat coal with high sulfur in Shanxi[J]. Spectrosc Spect Anal,2020,40(11):3373−3378.
    [39]
    周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报,2020,71(4):1802−1811.

    ZHOU Xing-yu, ZENG Fan-gui, XIANG Jian-hua, DENG Xiao-peng, XIANG Xing-hua. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. J Chem Ind Eng,2020,71(4):1802−1811.
    [40]
    李壮楣, 王艳美, 李平, 李和平, 白红存, 郭庆杰. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报,2018,69(5):2208−2216.

    LI Zhuang-mei, WANG Yan-mei, LI Ping, LI He-ping, BAI Hong-cun, GUO Qing-jie. Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. J Chem Ind Eng,2018,69(5):2208−2216.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (887) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return