ZHANG Yun, ZHAO Shun, ZHANG Li-jun, HU Hao-quan, JIN Li-jun. Production of hydrogen and carbon nanofibers by methane decomposition over the Ni/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 529-536. DOI: 10.19906/j.cnki.JFCT.2021036
Citation: ZHANG Yun, ZHAO Shun, ZHANG Li-jun, HU Hao-quan, JIN Li-jun. Production of hydrogen and carbon nanofibers by methane decomposition over the Ni/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 529-536. DOI: 10.19906/j.cnki.JFCT.2021036

Production of hydrogen and carbon nanofibers by methane decomposition over the Ni/SiO2 catalyst

  • Catalytic decomposition of methane is a promising route for hydrogen production owing to simple operation, easy separation of the products and no COx emission. In this work, a mesoporous Ni/SiO2 catalyst was prepared by impregnation method and used in methane decomposition; the fresh and spent catalysts and the morphology of deposited carbon were characterized by N2 adsorption-desorption, X-ray diffraction, hydrogen temperature programmed reduction, scanning electron microscopy and transmission electron microscopy. The effects of calcination temperature, metal loading and reaction temperature on the catalytic performance of Ni/SiO2 in methane decomposition were investigated. The results show that the Ni/SiO2 catalyst exhibits mesoporous structure. The calcination temperature has a slight effect on the textural properties and catalytic performances of Ni/SiO2, but a significant influence on the agglomeration degree of Ni particles on the catalyst surface. The catalytic activity of Ni/SiO2 increases first with increasing the metal loading up to 30% and then declines with a further increase of metal loading. Meanwhile, the reaction temperature has a remarkable influence on the catalytic activity and stability and the state of the deposited carbon; a high temperature results in the decrease of the catalytic stability and the formation of encapsulated carbon. In particular, for the methane decomposition over the 30% Ni/SiO2 catalyst, the methane conversion of about 9.8% was obtained at 500 °C after reaction for 1000 min; the yield of carbon nanofiber at 500 °C is about 7.2 times higher than that at 650 °C.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return