Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
HUANG Jian-bo, LIU Yang, YAN Lun-jing, LIAO Jun-jie, CHANG Li-ping, WANG Jian-cheng. Influences of the composition and structure of extractants on their extraction behavior for coal direct liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1077-1085. doi: 10.19906/j.cnki.JFCT.2021048
Citation: HUANG Jian-bo, LIU Yang, YAN Lun-jing, LIAO Jun-jie, CHANG Li-ping, WANG Jian-cheng. Influences of the composition and structure of extractants on their extraction behavior for coal direct liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1077-1085. doi: 10.19906/j.cnki.JFCT.2021048

Influences of the composition and structure of extractants on their extraction behavior for coal direct liquefaction residue

doi: 10.19906/j.cnki.JFCT.2021048
Funds:  The project was supported by National Energy Group 2030 Pilot Project (GJNY2030XDXM-19-17), Natural Science Foundation of Shanxi Province (201901D111119) and Science and Technology Innovation Project of Higher Education in Shanxi Province
  • Received Date: 2021-01-08
  • Rev Recd Date: 2021-02-26
  • Available Online: 2021-03-19
  • Publish Date: 2021-08-31
  • During the direct coal liquefaction process, coal direct liquefaction residue (CDLR), which accounts for about 30% of the coal input, will be produced and the polycyclic aromatic hydrocarbons can be extracted from it by extraction to prepare high-value carbon materials. The influences of composition and structure of extractants on the extraction rate and properties of extracted products were systematically summarized. The extraction rate of the extractants which have aromatic structure or nitrogen and oxygen atom can reach more than 50%. The extracts in alkane organic solvents mainly contain condensed aromatic structure with 2–4 benzene rings and have a lower molecular weight and heteroatom content. The extracts in heteroatoms containing solvents are mainly composed of condensed aromatic structure with 4–7 benzene rings and have a larger molecular weight. And they are rich in heteroatoms, such as nitrogen, oxygen and sulfur, and have a high atomic ratio of C/H. The extracts of pyridinium-based ionic liquids have higher atomic ratio of C/H and aromaticity. And the ash content of the extracts of ionic liquids containing organic acid ions is close to 0. When coal liquefaction oil or coal tar distillate are used as extractants, the extraction rate can reach 60%, which are suggested for industrial applications of CDLR extraction.
  • loading
  • [1]
    HIRANO K. Outline of NEDOL coal liquefaction process development (pilot plant program)[J]. Fuel Process Technol,2000,62(2):109−118.
    [2]
    胡发亭, 田青运. 煤液化残渣性质及应用研究进展[J]. 洁净煤技术,2007,13(4):21−24.

    HU Fa-ting, TIAN Qing-yun. The research development on residual’s characteristics and applications of coal liquefaction[J]. Clean Coal Technol,2007,13(4):21−24.
    [3]
    MOCHIDA I, OKUMA O, YOON S H. Chemicals from direct coal liquefaction[J]. Chem Rev,2014,114(3):1637−1672. doi: 10.1021/cr4002885
    [4]
    张雅婕, 薛永兵, 刘振民. 煤直接液化残渣性能及应用的研究进展[J]. 洁净煤技术, 2020, in press.

    ZHANG Ya-jie, XUE Yong-bing, LIU Zhen-min. Research progress on the properties and applications of direct liquefaction residue of coal[J]. Clean Coal Technol, 2020, in press.
    [5]
    KANG Y H, WEI X Y, LIU G H, MU M, MA X R, GAO Y, ZONG Z M. CO2-hierarchical activated carbon prepared from coal gasification residue: Adsorption equilibrium, isotherm, kinetic and thermodynamic studies for methylene blue removal[J]. Chin J Chem Eng,2020,28(6):1694−1700. doi: 10.1016/j.cjche.2019.12.017
    [6]
    谷小会, 周铭, 史士东. 神华煤直接液化残渣中重质油组分的分子结构[J]. 煤炭学报,2006,31(1):76−80.

    GU Xiao-hui, ZHOU Ming, SHI Shi-dong. The molecular structure of heavy oil fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc,2006,31(1):76−80.
    [7]
    谷小会, 史士东, 周铭. 神华煤直接液化残渣中沥青烯组分的分子结构研究[J]. 煤炭学报,2006,31(6):785−789.

    GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc,2006,31(6):785−789.
    [8]
    DING M J, ZONG Z M, ZONG Y, OUYANG X D, HUANG Y G, ZHOU L, WANG F, CAO J P, WEI X Y. Isolation and identification of fatty acid amides from shengli coal[J]. Energy Fuels,2008,22(4):2419−2421. doi: 10.1021/ef700499y
    [9]
    WEI X Y, NI Z H, XIONG Y C, ZONG Z M, WANG X H, CAI C W, JI Y F, XIE K C. Pd/C-catalyzed release of organonitrogen compounds from bituminous coals[J]. Energy Fuels,2002,16(2):527−528. doi: 10.1021/ef010219e
    [10]
    ZHAO X Y, ZONG Z M, CAO J P, MA Y M, HAN L, LIU G F, ZHAO W, LI W Y, XIE K C, BAI X F. Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals[J]. Fuel,2008,87(4/5):565−575. doi: 10.1016/j.fuel.2007.02.021
    [11]
    坚一明, 李显, 朱贤青, 芦田隆一, WORASUWANNARAK N, 胡振中, 罗光前. 低阶煤与生物质在热溶剂提质萃取过程中的相互作用[J]. 燃料化学学报,2019,47(1):25−33.

    SHU Yi-ming, LI Xian, ZHU Xian-qing, ASHIDA R, WORASUWANNARAK N, HU Zhen-zhong, LUO Guang-qian. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. J Fuel Chem Technol,2019,47(1):25−33.
    [12]
    HANSEN, CHRALES M. The universality of the solubility parameter[J]. Ind Eng Chem Res,1969,8(1):2−11. doi: 10.1021/i360029a002
    [13]
    张琪. 马西拉原油, 卡宾达原油和大庆原油的强化蒸馏研究[D]. 上海: 华东理工大学, 2005.

    ZHANG Qi. Study on the intensified distillation of Masilla Crude Oil, Cabinda Crude Oil and Daqing Crude Oil[D]. Shanghai: East China University of Science and Technology, 2005.
    [14]
    盛英. 煤液化残留物溶剂萃取及其萃取物的特性研究[D]. 北京: 煤炭科学研究总院, 2009.

    SHENG Ying. The research of coal liquefaction residue solvent extraction and the characteristics of the extract[D]. Beijing: China Coal Research Institute, 2009.
    [15]
    范芸珠. 煤直接液化残渣性质及应用的探索性研究[D]. 上海: 华东理工大学, 2010.

    FAN Yun-zhu. Exploratory study on the properties and application of coal direct liquefaction residue[D]. Shanghai: East China University of Science and Technology, 2010.
    [16]
    张晓云, 王飞, 李国省, 樊星, 于亚如, 赵云鹏, 魏贤勇, 马凤云, 余果. 煤中有机质可溶组分分子特征的聚类分析[J]. 分析化学,2019,47(1):108−114.

    ZHANG Xiao-yun, WANG Fei, LI Guo-sheng, FAN Xing, YU Ya-ru, ZHAO Yun-peng, WEI Xian-yong MA Feng-yun, YU Guo. Cluster analysis of molecular characteristics for soluble organic matter in coals[J]. Chin J Anal Chem,2019,47(1):108−114.
    [17]
    LI P, QIAO T X, LU X N. A fast and efficient way for recovering organic carbon resources from a coal byproduct: separation and structural evaluation[J]. Sep Sci Technol,2020,56(11):1965−1983.
    [18]
    LI P, ZONG Z M, WEI X Y, Wang Y G, FAN G X. Structural features of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel,2019,242:819−827. doi: 10.1016/j.fuel.2019.01.004
    [19]
    CONG X S, LI M, LIU C L, WANG D F, XIAO R R, BIE F S, JV C X, QI X, LV F K, WEI X Y. Unambiguous Evidence for the Occurrence of Pentamethylphenol in Lignite Methanolysate[J]. Energy Fuels,2019,33:5785−5788. doi: 10.1021/acs.energyfuels.9b00506
    [20]
    LI P, WEI X Y, SUN X, LU Y, ZONG Z, MUKASA R, WANG Y, SHI D, LI L, ZHAO L, FAN X, ZHAO Y, HOU J, LIU Q. The isolation of condensed arenes from Shenmu-Fugu coal liquefaction residue[J]. Energy Source Part A,2013,35(23):2250−2256. doi: 10.1080/15567036.2012.703286
    [21]
    刘朋飞, 张永奇, 房倚天, 赵建涛. 神华煤直接液化残渣超临界溶剂萃取研究[J]. 燃料化学学报,2012,40(7):776−781.

    LIU Peng-fei, ZHANG Yong-qi, FANG Yi-tian, ZHAO Jian-tao. Supercritical solvent extraction of direct liquefaction residue from Shenhua coal[J]. J Fuel Chem Technol,2012,40(7):776−781.
    [22]
    位艳宾, 魏贤勇, 李胜, 于利成, 宗志敏. 神府和胜利煤液化残渣CS2萃取物的组成分析[J]. 河南师范大学学报(自然科学版),2013,41(1):74−77.

    WEI Yan-bin, WEI Xian-yong, LI Sheng, YU Li-cheng, ZONG Zhi-min. Chemical compositions of carbon disulfide extractable fraction of Shenfu and Shengli coal liquefaction residue[J]. J Nat Sci Henan Normal Univ,2013,41(1):74−77.
    [23]
    ZHENG Q X, ZHANG Y L, WAHYUDIONO, FOUQUET T, ZENG X, KANDA H, GOTO M. Room-temperature extraction of direct coal liquefaction residue by liquefied dimethyl ether[J]. Fuel,2020,262:116528. doi: 10.1016/j.fuel.2019.116528
    [24]
    CHENG X, LI G, PENG Y, SONG S, SHI X, WU J, XIE J, ZHOU M, HU G. Obtaining needle coke from coal liquefaction residue[J]. Chem Tech Fuels Oil+,2012,48(5):349−355. doi: 10.1007/s10553-012-0379-3
    [25]
    WANG Y G, NIU Z S, SHEN J, NIU Y X, LIU G, SHENG Q T. Optimization of direct coal liquefaction residue extraction[J]. Energy Source Part A,2017,39(1):83−89. doi: 10.1080/15567036.2016.1235062
    [26]
    LI P, ZHAO Y Q, FAN G X. Quantitative analysis of alkanoate and condensed arenes in the extracts from direct coal liquefaction residue by ultrasonication-assisted solvent extraction using alcohols[J]. Energ Source Part A,2018,40(10):1266−1272. doi: 10.1080/15567036.2018.1476623
    [27]
    CONG X S, ZONG Z M, LI M, ZHOU Y, GAO S Q, WEI X Y. Isolation and Identification of Two Novel Condensed Aromatic Lactones from Zhundong Subbituminous Coal[J]. Energy Fuels,2014,28:7394−7397. doi: 10.1021/ef501851y
    [28]
    LI P, ZONG Z M, LI Z K, WANG Y G, LIU F J, WEI X Y. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol,2015,132:91−98. doi: 10.1016/j.fuproc.2014.12.026
    [29]
    ZHANG Y Y, WEI X Y, LV J H, JIANG H, LIU F J, LIU G H, ZONG Z M. Characterization of nitrogen-containing aromatics in Baiyinhua lignite and its soluble portions from thermal dissolution[J]. Chin J Chem Eng,2019,27(11):2783−2787. doi: 10.1016/j.cjche.2019.06.001
    [30]
    李鹏. 神木-府谷煤液化残渣的组成结构与H2O2/乙酸酐氧化[D]. 徐州: 中国矿业大学, 2015.

    LI Peng. Compositional and structural features of Shenmu-Fugu coal liquefaction residue and oxidation using H2O2/acetic anhydride[D]. Xuzhou: China University of Mining and Technology, 2015.
    [31]
    LIN X C, LI S Y, GUO F, H, JIANG G C, CHEN X J, WANG Y G. High-efficiency extraction and modification on the coal liquefaction residue using supercritical fluid with different types of solvents[J]. Energy Fuels,2016,30(5):3917−3928. doi: 10.1021/acs.energyfuels.6b00326
    [32]
    位艳宾. 煤液化残渣的组成结构分析和催化加氢[D]. 徐州: 中国矿业大学, 2013.

    WEI Yan-bin. Compositional Analysis and Catalytic Hydrogenation of Coal Liquefaction Residues[D]. Xuzhou: China University of Mining and Technology, 2013.
    [33]
    Yuan X, Liu Y H, Si J P, ZHU Y Q, YUAN K. Comparison study of different extraction methods of Sarcandra glabra[J]. J Chin Med Mater,2008,31(9):1415−1418.
    [34]
    田斌. 煤分级热解气化基础研究[D]. 徐州: 中国矿业大学, 2013.

    TIAN Bin. Compositional analysis and catalytic hydrogenation of coal liquefaction residues[D]. Xuzhou: China University of Mining and Technology, 2013.
    [35]
    KARATUN ON, KAPIZOVA NB. Extraction of aromatic hydrocarbons from gasoline fraction by blended extractants[J]. Chem Technol Fuels Oil+,2014,50(3):230−232. doi: 10.1007/s10553-014-0514-4
    [36]
    程时富, 张元新, 常鸿雁, 白雪梅, 章旭文, 李克键. 煤直接液化残渣的萃取和利用研究[J]. 煤炭转化,2015,38(4):38−42.

    CHENG Shi-fu, ZHANG Yuan-xin, CHANG Hong-yan, BAI Xue-mei, ZHANG Xu-wen, LI Ke-jian. Study on extraction and utilization of coal direct liquefaction residue[J]. Coal Convers,2015,38(4):38−42.
    [37]
    钟金龙. 煤炭直接液化残渣加氢试验研究[D]. 北京: 煤炭科学研究总院, 2011.

    ZHONG Jin-long. Study on hydrogenation of direct coal liquefaction residue[D]. Beijing: China Coal Research Institute, 2011.
    [38]
    陈吉鲁. 煤液化残渣溶剂萃取分离及利用研究[D]. 上海: 上海应用技术学院, 2015.

    CHEN Ji-lu. Extract separation and utilization of coal direct liquefied residue[D]. Shanghai: Shanghai Institute of Technology, 2015.
    [39]
    钟金龙, 李文博, 史士东, 朱晓苏. 煤炭直接液化残渣有机可溶物萃取研究[J]. 煤炭学报,2012,37(2):316−322.

    ZHONG Jin-long, LI Wen-bo, SHI Shi-dong, ZHU Xiao-su. Solvent extraction research on organic matter in direct coal liquefaction residue[J]. J China Coal Soc,2012,37(2):316−322.
    [40]
    SEDDON K R. Ionic liquids for clean technology[J]. J Chem Technol Biot,1997,68(4):351−356. doi: 10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
    [41]
    ZHENG C, BRUNNER M, LI H, ZHANG D K, ATKIN R. Dissolution and suspension of asphaltenes with ionic liquids[J]. Fuel,2019,238:129−138. doi: 10.1016/j.fuel.2018.10.070
    [42]
    BAI L, NIE Y, LI Y, DONG H F, ZHANG X P. Protic ionic liquids extract asphaltenes from direct coal liquefaction residue at room temperature[J]. Fuel Process Technol,2013,108:94−100. doi: 10.1016/j.fuproc.2012.04.008
    [43]
    赵波. 磁性离子液体萃取脱除煤直接液化残渣中灰分的研究[D]. 上海: 华东理工大学, 2015.

    ZHAO Bo. Research on the extraction of magnetic ionic liquids to remove ash from coal direct liquefaction residues[D]. Shanghai: East China University of Science and Technology, 2015.
    [44]
    BAI L, NIE Y, HUANG J C, LI Y, DONG H F, ZHANG X P. Efficiently trapping asphaltene-type materials from direct coal liquefaction residue using alkylsulfate-based ionic liquids[J]. Fuel,2013,112:289−294. doi: 10.1016/j.fuel.2013.05.035
    [45]
    WANG J, YAO H, NIE Y, BAI L, ZHANG X P, LI J W. Application of iron-containing magnetic ionic liquids in extraction process of coal direct liquefaction residues[J]. Ind Eng Chem Res,2012,51(9):3776−3782. doi: 10.1021/ie202940k
    [46]
    ZHAO B, CAO F H. Research on iron-containing magnetic ionic liquids in extraction-deash of coal direct liquefaction residues using ultrasonic oscillation[J]. Adv Mat Res,2014,1049/1050:110−117.
    [47]
    王杰利. 基于煤直接液化残渣提取沥青烯的磁性离子液体合成与研究[D]. 北京: 北京化工大学, 2012.

    WANG Jie-li. Syntheses and studies of magnetic ionic liquids extracting asphaltenes from coal direct liquefaction residues[D]. Beijing: Beijing University of Chemical Technology, 2012.
    [48]
    NIE Y, BAI L, LI Y, DONG H F, ZHANG X P, ZHANG S J. Study on extraction asphaltenes from direct coal liquefaction residue with ionic liquids[J]. Ind Eng Chem Res,2011,50(17):10278−10282. doi: 10.1021/ie201187m
    [49]
    NIE Y, BAI L, DONG H F, ZHANG X P, ZHANG S J. Extraction of asphaltenes from direct coal liquefaction residue by dialkylphosphate ionic liquids[J]. Sep Sci Technol,2012,47:386−391. doi: 10.1080/01496395.2011.633957
    [50]
    LI Y, Zhang X P, LAI S Y, DONG H F, CHEN X L, WANG X L, NIE Y, SHENG Y, ZHANG S J. Ionic liquids to extract valuable components from direct coal liquefaction residues[J]. Fuel,2012,94:617−619. doi: 10.1016/j.fuel.2011.10.031
    [51]
    DYRKACZ G R, BLOOMQUIST C A A. Solvent extraction of separated macerals in carbon disulfide/N-methylpyrrolidone[J]. Energy Fuels,2001,15(6):1403−1408. doi: 10.1021/ef0100350
    [52]
    HUANG J, LI C, BAI L. Extraction of coal-tar pitch using NMP/ILs mixed solvents[J]. Sci China Chem,2014,57(12):1760−1765. doi: 10.1007/s11426-014-5189-5
    [53]
    LI Y, ZHANG X P, DONG H F, WANG X L, NIE Y, ZHANG S J. Efficient extraction of direct coal liquefaction residue with the [bmim]Cl/NMP mixed solvent[J]. RSC Adv,2011,1(8):1579−1584. doi: 10.1039/c1ra00218j
    [54]
    王晓亮. 离子液体提取煤液化残渣及其回收的研究[D]. 北京: 北京化工大学, 2012.

    WANG Xiao-liang. Study on extraction of direct coal liquefaction residue using inoic liquids and recycle of inoic liquids[D]. Beijing: Beijing University of Chemical Technology, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (626) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return