Volume 49 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
TIAN Jun-ru, WANG Xiao-min, LIANG Li-ping, LI Guo-min. Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1347-1353. doi: 10.19906/j.cnki.JFCT.2021049
Citation: TIAN Jun-ru, WANG Xiao-min, LIANG Li-ping, LI Guo-min. Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1347-1353. doi: 10.19906/j.cnki.JFCT.2021049

Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue

doi: 10.19906/j.cnki.JFCT.2021049
Funds:  The project was supported by the National Natural Science Foundation of China (52072256, U1710256, 51802212)
  • Received Date: 2021-01-15
  • Rev Recd Date: 2021-03-04
  • Available Online: 2021-03-24
  • Publish Date: 2021-09-30
  • The Fe3O4 loaded ceramic composite microwave absorbents were successfully prepared by recycling the solid waste coal gangue. First, the coal gangue based matrix was obtained by crushing, ball-milling, acid pickling, granulation and sintering process, and then the subsequent experiment involved loading precursor solution as well as in-situ carbothermal reduction. Moreover, the influence of Fe3O4 loading content on the microstructure and electromagnetic performance was also investigated. It was founded that the ceramic composites exhibited excellent microwave absorption when the reduction temperature kept 600 ℃ and the concentration of precursor solution was 1.25−1.5 mol/L, under which the minimum reflection loss value reached −20.1 dB and the effective absorption bandwidth kept 4.7 GHz as the coating thicknesses was 2.0 mm. This was attributed to the better impedance match and attenuation characteristic. The simple technological process provided in this work could offer a novel method for the recycling of coal gangue, and was beneficial for the low-cost of microwave absorbents.
  • loading
  • [1]
    SHAHZAD F, ALHABEB M, HATTER C B, ANASORI B, HONG M S, KOO C M, GOGOTSI Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137−1140. doi: 10.1126/science.aag2421
    [2]
    ZHANG M, LI Z J, WANG T, DING S Q, SONG G Q, ZHAO J, MENG A, YU H Y, LI Q D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites[J]. Chem Eng J,2019,362:619−627. doi: 10.1016/j.cej.2019.01.039
    [3]
    CHENG Y, LI Z Y, LI Y, DAI S S, JI G B, ZHAO H Q, CAO, J M, DU Y W. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption[J]. Carbon,2018,127:643−652. doi: 10.1016/j.carbon.2017.11.055
    [4]
    ZHANG Y, HUANG Y, ZHANG T F, CHANG H C, XIAO P S, CHEN H H, HUANG Z Y, CHEN Y S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Adv Mater,2015,27:2049−2053. doi: 10.1002/adma.201405788
    [5]
    QUAN B, SHI W H, ONG S J H, LU X C, WANG L Y P, JI G B, GUO Y F, ZHENG L R, XU Z C J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Adv Funct Mater,2019,28:1901236.
    [6]
    SINGH S K, AKHTAR M J, KAR K K. Hierarchical carbon nanotube-coated carbon fiber: Ultra-lightweight, thin, and highly efficient microwave absorber[J]. ACS Appl Mater Interfaces,2018,10:24816−24828. doi: 10.1021/acsami.8b06673
    [7]
    XIANG J, LI J L, ZHANG X H, YE Q, XU J H, SHEN X Q. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. J Mater Chem A,2014,2:16905−16914. doi: 10.1039/C4TA03732D
    [8]
    CHE R C, PENG L M, DUAN X F, CHEN Q, LIANG X L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon Nanotubes[J]. Adv Mater,2004,16:401−405. doi: 10.1002/adma.200306460
    [9]
    WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2:14940−14946. doi: 10.1039/C4TA02815E
    [10]
    LIU P B, HUANG Y, ZHANG X. Superparamagnetic Fe3O4 nanoparticles on graphene-golyaniline: Synthesis characterization and their excellent electromagnetic absorption properties[J]. J Alloy Compd,2014,596:25−31. doi: 10.1016/j.jallcom.2014.01.188
    [11]
    DU Y C, LIU W W, QING R, WANG Y, HAN X J, MA J. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites[J]. ACS Appl Mater Interfaces,2014,6:12997−13006. doi: 10.1021/am502910d
    [12]
    WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2012,6:11009−11017. doi: 10.1021/nn304630h
    [13]
    WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C,2011,115:14025−14030. doi: 10.1021/jp202078p
    [14]
    CHEN D Z, WANG G S, HE S, LIU J, GUO L, CAO M S. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties[J]. J Mater Chem A,2013,1:5996−6003. doi: 10.1039/c3ta10664k
    [15]
    LI G M, WANG L C, LI W X, XU Y. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous Mesoporous Mater,2015,21:97−104.
    [16]
    田玉明, 朱保顺, 力国民. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报,2019,47(3):365−369.

    TIAN Yu-ming, ZHU Bao-shun, LI Guo-min. Influence of coal gangue amount on properties of ceramic proppants[J]. J Chin Ceram Soc,2019,47(3):365−369.
    [17]
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095. doi: 10.1103/PhysRevB.61.14095
    [18]
    LI G M, WANG L C, LI W X, DING R M, XU Y. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent[J]. Phys Chem Chem Phys,2014,16:12385−12392. doi: 10.1039/C4CP00647J
    [19]
    LIU J, ZHANG H B, SUN R, LIU Y, LIU Z, ZHOU A, YU Z Z. Hydrophobic, Flexible, and Lightweight MXene Foams for high-performance electromagnetic-interference shielding[J]. Adv Mater,2017,170:2367−2373.
    [20]
    LI G M, MAO L T, ZHU B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. The novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8:14283.
    [21]
    QIAO M T, LEI X F, MA Y, TIAN L D, HE X W, SU K H, ZHANG Q Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Res,2018,11:1500−1519. doi: 10.1007/s12274-017-1767-0
    [22]
    LIU Y, LI Y, JIANG K, TONG G, LV T, WU W. Controllable synthesis ofelliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption[J]. J Mater Chem C,2016,4:7316−7323. doi: 10.1039/C6TC01737A
    [23]
    JIAN X, XIAO X Y, DENG L J, TIAN W, WANG X, MAHMOOD N, DOU S X. Heterostructured nanorings of Fe-Fe3O4@C hybrid with enhanced microwave absorption performance[J]. ACS Appl Mater Interfaces,2018,10:9369−9378.
    [24]
    LI Y X, LIU R G, PANG X Y, ZHAO X N. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption atgigahertz frequencies[J]. Carbon,2018,162:372−381.
    [25]
    XU X F, WANG G Z, WAN G P, SHI S H, HAO C C, TANG Y L, WANG G L. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chem Eng J,2020,382:122980. doi: 10.1016/j.cej.2019.122980
    [26]
    GANGOPADHYAY S, HADJIPANAYIS G C, DALE B, SORENSEN C M, KLABUNDE K J, PAPAEFTHYMIOU V, KOSTIKAS A. Magnetic-properties of ultrafine iron particles[J]. Phys Rev B,1992,45(17):9778−9787. doi: 10.1103/PhysRevB.45.9778
    [27]
    AHARONI A. Exchange resonance modes in a ferromagnetic sphere[J] J Appl Phys, 1991, 69(11): 7762–7764.
    [28]
    LIU Q H, CAO H, BI C Y, LIANG K P, YUAN K P, SHE W, YANG Y J, CHE R C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Adv Mater,2016,28:486−490. doi: 10.1002/adma.201503149
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (342) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return