Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
CHENG Jun-xia, ZHAO Xue-fei, LIU Wei, ZHU Ya-ming, GAO Li-juan, LAI Shi-quan. Analysis on the difference of coke microstructure in the same coking cycle during the production of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1102-1110. doi: 10.19906/j.cnki.JFCT.2021051
Citation: CHENG Jun-xia, ZHAO Xue-fei, LIU Wei, ZHU Ya-ming, GAO Li-juan, LAI Shi-quan. Analysis on the difference of coke microstructure in the same coking cycle during the production of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1102-1110. doi: 10.19906/j.cnki.JFCT.2021051

Analysis on the difference of coke microstructure in the same coking cycle during the production of coal-based needle coke

doi: 10.19906/j.cnki.JFCT.2021051
Funds:  The project was supported by the National Natural Science Foundation of China (U1361126), Natural Science Foundation of Liaoning Province (20180551218), Liaoning Provincial Department of Education Project (2020LNQN03), Excellent Talent Training Project of University of Science and Technology Liaoning (2018RC07)
  • Received Date: 2021-01-25
  • Rev Recd Date: 2021-03-13
  • Available Online: 2021-04-09
  • Publish Date: 2021-08-31
  • 8 kinds of mixed oil with different feeding time in the same coking cycle were the objects of the study. The optical structure, morphology structure and microcrystalline structure of needle coke formed by mixed oil with different feeding time in coking cycle were quantitatively analyzed by means of polarizing microscope, scanning electron microscope (SEM), XRD and Raman spectroscopy. The results show that the yield of coke after the thermal conversion of the mixed oil is higher than the theoretically calculated yield, indicating that the heavy oil participates in the thermal conversion reaction to form the coke with a streamlined optical structure. In the optical structure of calcined needle coke, MO-8" has the highest fiber content, followed by MO-16", and MO-32" has the lowest fiber content. SEM further proves that MO-8" has more lamellar number and more regular orientation. XRD analysis of needle coke confirms that the microcrystalline structure parameters (interlayer spacing d002, lamellar content N and the number of carbon atoms in each layer n) are very close. However, there are obvious differences in the content of graphite microcrystalline (Ig), and among which MO-8" has the highest content, followed by MO-4", and sample MO-32" has the lowest content. Furthermore Raman spectral analysis certifies that the basic microstructure of needle coke is similar. The fundamental reason is that the refined coal-tar pitch in the mixed oil determines the basic microstructure of needle coke. Due to the continuous circulation of heavy oil in the system, the microstructure of needle coke are different. Hence, the coking cycle is not easy to exceed 32 h in coal-based needle coke production, or else it will seriously affect the microstructure of needle coke.
  • loading
  • [1]
    KONDRASHEVA N K, RUDKO V A, NAZARENKO M Y, POVAROV V G, DERKUNSKII I O, KONOPLIN R R, GABDULKHAKOV R R, Influence of parameters of delayed coking process and subsequent calculation on the properties and morphology of petroleum needle coke from decant oil mixture of west siberian oil[J]. Energy Fuels, 2019, 33(7): 6373−6379.
    [2]
    刘巍, 高丽娟, 程俊霞, 赵雪飞. FWO法测定混合油的热转化动力学[J]. 炭素技术,2017,36(1):24−27.

    LIU Wei, GAO Li-juan, CHENG Jun-xia, ZHAO Xue-fei. Determination of thermal conversion kinetics of mixed oil by FWO method[J]. Carbon Technol,2017,36(1):24−27.
    [3]
    曹寅虎, 刘锋, 杨伟超, 魏保志, 王成扬. 专利视角下针状焦研究进展(Ⅲ)—延迟焦化工艺[J]. 炭素技术,2019,38(5):7−12.

    CAO Yan-hu, LIU Feng, YANG Wei-chao, WEI Bao-zhi, WANG Cheng-yang. Research progress of needle coke from patent perspective (III) - Delayed coking process[J]. Carbon Technol,2019,38(5):7−12.
    [4]
    CHENG J X, ZHAO X F, GAO L J, ZHU Y M. Thermal conversion mechanism and thermodynamics of mixed oil in coal-based needle coke production[J]. Asia-Pac J Chem Eng,2019,14(5):1−13.
    [5]
    程俊霞, 朱亚明, 高丽娟, 赵雪飞. 煤系针状焦生产中混合油的黏流特性与分子结构间关联性的FT-IR解析[J]. 光谱学与光谱分析,2020,40(6):1883−1888.

    CHENG Jun-xia, ZHU Ya-ming, GAO li-juan, ZHAO Xue-fei. FT-IR analysis of correlation between viscosity flow characteristics and molecular structure of mixed oil in production of coal-based needle coke[J]. Spectrosc Spect Anal,2020,40(6):1883−1888.
    [6]
    张戈, 熊楚安. 工业生产中影响针状焦形成的主要条件[J]. 炭素,2018,3:43−44.

    ZHANG Ge, XIONG Chu-an. Main conditions affecting the formation of needle coke in industrial production[J]. Carbon (China),2018,3:43−44.
    [7]
    SAOWADEE N, AGERSTED K, BOWEN J R. Lattice constant measurement from electron backscatter diffraction patterns[J]. J Microsc,2017,266(2):200−210. doi: 10.1111/jmi.12529
    [8]
    MENDEZ A, SANTAMARIA R, GRANDA M. The effect of the reinforcing carbon on the microstructure of pitch-based granular composites[J]. J Microsc,2010,209(2):81−93.
    [9]
    BRZOZOWAKA T, ZIELIFLAKI J, MACHNIKOWSKI J. Effect of polymeric additives to coal tar pitch on carbonization behaviour and optical texture of resultant coke[J]. J Anal Appl Pyrolysis,1998,48(1):45−58. doi: 10.1016/S0165-2370(98)00101-6
    [10]
    ZENOU V Y, SNEJANA B. Microstructural analysis of undoped and moderately Sc-doped TiO2, anatase nanoparticles using Scherrer equation and Debye function analysis[J]. Mater Charact,2018,144:287−296. doi: 10.1016/j.matchar.2018.07.022
    [11]
    SARKAR A, DASGUPTA K, BARAT P, SATHIYAMOORTHY D. Studies on neon irradiated amorphous carbon using X-ray diffraction technique[J]. Int J Mod Phys B,2008,22(7):865−875. doi: 10.1142/S0217979208038119
    [12]
    BALACHANDRAN M. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sc,2012,7(4):3127−3134.
    [13]
    MANOJ B. Investigation of nanocrystalline structure in selected carbonaceous materials[J]. Int J Min Met Mater,2014,21(9):940−946. doi: 10.1007/s12613-014-0993-7
    [14]
    任瑞晨, 张乾伟, 石倩倩, 李彩霞, 庞鹤, 董伟. 高变质无烟煤伴生微晶石墨鉴定与分析[J]. 煤炭学报,2016,41(5):1294−1300.

    REN Rui-chen, ZHANG Qian-wei, SHI Qian-qian, LI Cai-xia, PANG He, DONG Wei. Identification and analysis of amorphous graphite associated with high metamorphosed anthracite[J]. J China Coal Soc,2016,41(5):1294−1300.
    [15]
    HAN W H, CAI Y X, LI X H, WANG J, LI Kang-hua. Raman spectroscopy analysis of carbon structural evolution of diesel particulate matters with the treatment of nonthermal plasma[J]. Spectrosc Spect Anal,2012,32(32):2152−2156.
    [16]
    SAWARKAR A N, PANDIT A B, SAMANT S D, JOSHI J B. Petroleum residue upgrading via delayed coking: A review[J]. Canadian J Chem Eng,2010,85(1):1−24.
    [17]
    GUO A, ZHANG X, WANG Z. Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry[J]. Fuel Process Technol,2008,89(7):643−650. doi: 10.1016/j.fuproc.2007.12.006
    [18]
    VEJAHATI F, GUPTA R. Co-Gasification of Oil sand Coke with Coal[M]. New York: Springer Berlin Heidelberg, 2013.
    [19]
    GUO Y, LI Y, RAN N, FENG G. Co-carbonization effect of asphaltine and heavy oil in mesophase development[J]. J Mater Sci,2016,51(5):2558−2564. doi: 10.1007/s10853-015-9568-x
    [20]
    MOCHIDA I, MARSH H. Carbonization and liquid-crystal (mesophase) development. 10. The co-carbonization of coals with solvent-refined coals and coal extracts[J]. Fuel,1979,58(9):633−641. doi: 10.1016/0016-2361(79)90216-3
    [21]
    MOCHIDA I, OYAMA T, KORAI Y. Formation scheme of needle coke from FCC-decant oil[J]. Carbon,1988,26(1):49−55. doi: 10.1016/0008-6223(88)90008-5
    [22]
    ELKANZI E M, MARHOON F S, JASIM M J. Kinetic analysis of the coke calcination processes in rotary kilns[J]. Engineering,2014,256:45−54.
    [23]
    张德保, 申海平, 范启明. 针状焦制备过程中的中间相研究进展[J]. 化工进展,2012,311(2):175−181.

    ZHANG De-bao, SHEN Hai-ping, FAN Qi-ming. Research advances about mesophase in needle coke preparation[J]. Chem Ind Eng Prog,2012,311(2):175−181.
    [24]
    SANTAMARIA-RAMIREZ R, ROMERO-PALAZON E, GOMEZ-DE-SALAZAR C, RODRIGUEZ-REINOSO F, MARTINEZ-SAEZ S, MARTINEZ-ESCANDELL M, MARSH H. Influence of pressure variations on the formation and development of mesophase in a petroleum residue[J]. Carbon,1999,37(3):445−455. doi: 10.1016/S0008-6223(98)00211-5
    [25]
    OBARA T, YOKONA T, MIYAZAWA K, SANADA Y. Carbonization behavior of hydrogenated ethylene tar pitch[J]. Carbon,1981,19(4):263−267. doi: 10.1016/0008-6223(81)90071-3
    [26]
    MENENDEZ R, FERREIRE M G, BERMEJO J, MARSH H. The development of mesophase in coal tar and petroleum pitches characterized by extrography[J]. Fuel,1994,73(1):25−34. doi: 10.1016/0016-2361(94)90184-8
    [27]
    TAYLOR G H, PENNOCK G M, GERALD J D F, BRUNCKHORST L F. Influence of QI on mesophase structure[J]. Carbon,1993,31(2):341−354. doi: 10.1016/0008-6223(93)90039-D
    [28]
    ZHU Y M, HU C S, XU Y L, ZHAO C L, YIN X T, ZHAO X F. Preparation and Characterization of Coal Pitch-Based Needle Coke (Part II): The Effects of β resin in refined coal pitch[J]. Energy Fuels,2020,34(2):2126−2134.
    [29]
    张怀平, 吕春祥, 李开喜, 刘春林, 凌立成. 针状焦的结构和原料[J]. 煤炭转化,2001,24(2):22−26.

    ZhANG Huai-ping, LV Chun-xiang, LI Kai-xi, LIU Chu-lin, LING Li-cheng. Structure and raw materials of needle coke[J]. Coal Convers,2001,24(2):22−26.
    [30]
    SHEN S G, ZHANG J, LI J J, QIN H F, ZHAO Z J. The influence of adding modified pitch and phenol residue to coal blends on coke microcrystalline size[J]. Appl Mech Mater,2011,71:2331−2335.
    [31]
    MATEOS J M J, ROMERO E, SALAZAR C G D. XRD study of petroleum cokes by line profile analysis: Relations among heat treatment, structure, and sulphur content[J]. Carbon,1993,31(7):1159−1178. doi: 10.1016/0008-6223(93)90069-M
    [32]
    LI K, LIU Q, CHENG H, Hu M, ZHANG S. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM[J]. Spectrochim Acta A,2021,249(15):1−15.
    [33]
    LOEH M O, BADACZEWSKI F, FABER K, HINTNER S, BERTINO M F, MUELLER P, METZ J, SMARSLY B M. Analysis of thermally induced changes in the structure of coal tar pitches by an advanced evaluation method of X-ray scattering data[J]. Carbon,2016,109:823−835. doi: 10.1016/j.carbon.2016.08.031
    [34]
    ALAREZ A G, ESCANDELL M M, MOLINA S M, RODRGUEZ-REINOSO F. Pyrolysis of petroleum residues: analysis of semicokes by X-ray diffraction[J]. Carbon,1999,37(10):1627−1632. doi: 10.1016/S0008-6223(99)00085-8
    [35]
    Sadezky A, Muckenhuber H, Grothe H, Niessner, RPöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731−1742. doi: 10.1016/j.carbon.2005.02.018
    [36]
    RIBEIRO-SOARES J, CANCADO L G, FALCAO N, F. ERREIRA E H M, ACHETE C A. use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils[J]. J Ranan Spectrosc,2013,44(2):283−289. doi: 10.1002/jrs.4191
    [37]
    ZHANG Y, KANG X, TAN J, FROSTL R L. Influence of calcination and acidification on structural characterization of Anyang anthracites[J]. Energy Fuels,2013,27(11):7191−7197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (617) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return