Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
XU Yan-mei, PAN Zhi-yan, HU Hao-quan. Study on structure and combustion performance of Daliuta coal pyrolysis char by Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1656-1666. doi: 10.19906/j.cnki.JFCT.2021059
Citation: XU Yan-mei, PAN Zhi-yan, HU Hao-quan. Study on structure and combustion performance of Daliuta coal pyrolysis char by Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1656-1666. doi: 10.19906/j.cnki.JFCT.2021059

Study on structure and combustion performance of Daliuta coal pyrolysis char by Raman spectroscopy

doi: 10.19906/j.cnki.JFCT.2021059
Funds:  The project was supported by the National Key R&D Program of China (2016YFB0600301)
  • Received Date: 2021-03-01
  • Rev Recd Date: 2021-05-06
  • Available Online: 2021-06-16
  • Publish Date: 2021-11-30
  • In this study, the structure and combustion performance of pyrolysis chars from Daliuta raw coal, vitrinite-rich sample, inertinite-rich sample and demineralized coal sample were studied by Raman spectroscopy. The results showed that under the same pyrolysis conditions, compared with the pyrolysis char from Daliuta raw coal sample, the pyrolysis char from the demineralized coal sample has more large aromatic ring systems (≥ 6 rings), higher ignition temperature and much low combustion performance. The combustion performance of pyrolysis char from inertinite-rich sample is lower than that from vitrinite-rich sample, and the burnout capacity of pyrolysis char from inertinite-rich sample is far lower than that from vitrinite-rich sample. The ignition temperature (ti), the combustion reactivity index (tindex) and the wavenumber of D band (WD) in the Raman spectrum of Daliuta coal char has a good correlation; the correlation coefficients R2 obtained by the quadratic curve fitting are 0.9159 and 0.7133, respectively. There is no obvious correlation between burn-out temperature and WD of Daliuta coal char, indicating that the carbon structure of Daliuta coal char has a significant impact on the ignition temperature and combustion reactivity index of the char, but is no regular effect on the burn-out ability of the char.
  • loading
  • [1]
    ZHU J L, JIN L J, LUO Y W, HU H Q, XIONG Y K, WEI B Y, WANG D C. Fast co-pyrolysis of a massive naomaohu coal and cedar mixture using rapid infrared heating[J]. Energy Convers Manage,2020,205:112442. doi: 10.1016/j.enconman.2019.112442
    [2]
    REDDY B R, SHRAVANI B, DAS B, DASH P S, VINU R. Microwave-assisted and analytical pyrolysis of coking and non-coking coals: Comparison of tar and char compositions[J]. J Anal Appl Pyrolysis,2019,142:104614. doi: 10.1016/j.jaap.2019.05.003
    [3]
    YAN J C, LIU M X, FENG Z H, BAI Z Q, SHUI H F, LI Z K, LEI Z P, WANG Z C, REN S B, KANG S G, YAN H L. Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model[J]. Fuel,2020,261:116359. doi: 10.1016/j.fuel.2019.116359
    [4]
    ZHAO Y P, HU H Q, JIN L J, HE X F, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol,2011,92(4):780−786. doi: 10.1016/j.fuproc.2010.09.005
    [5]
    ROBERTS M J, EVERSON R C, NEOMAGUS H W J P, OKOLO G N, VAN NIEKERK D, MATHEWS J P. The characterisation of slow-heated inertinite- and vitrinite-rich coals from the South African coalfields[J]. Fuel,2015,158:591−601. doi: 10.1016/j.fuel.2015.06.006
    [6]
    SUN Q L, LI W, CHEN H K, LI B Q. The variation of structural characteristics of macerals during pyrolysis[J]. Fuel,2003,82(6):669−676. doi: 10.1016/S0016-2361(02)00356-3
    [7]
    WANG Y, SERRANO S, SANTIAGO-AVILES J J. Raman characterization of carbon nanofibers prepared using electrospinning[J]. Synth Met,2003,138(3):423−427. doi: 10.1016/S0379-6779(02)00472-1
    [8]
    CHEN H, GOLDER M R, WANG F, JASTI R, SWAN A K. Raman spectroscopy of carbon nanohoops[J]. Carbon,2014,67:203−213. doi: 10.1016/j.carbon.2013.09.082
    [9]
    SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731−1742. doi: 10.1016/j.carbon.2005.02.018
    [10]
    徐俊. 基于拉曼光谱分析的煤和煤焦结构与反应性研究[D]. 武汉: 华中科技大学, 2017.

    XU Jun. A study of the coal/char structures and combustion reactivity using Raman spectroscopy[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [11]
    POTGIETER-VERMAAK S, MALEDI N, WAGNER N, VAN HEERDEN J H P, VAN GRIEKEN R, POTGIETER J H. Raman spectroscopy for the analysis of coal: A review[J]. J Raman Spectrosc,2011,42(2):123−129. doi: 10.1002/jrs.2636
    [12]
    XU Y M, CHEN X, WANG L, BEI K, WANG J, CHOU I M, PAN Z Y. Progress of Raman spectroscopic investigations on the structure and properties of coal[J]. J Raman Spectrosc,2020,51:1874−1884. doi: 10.1002/jrs.5826
    [13]
    XU Y M, FU Q Y, HONG Y M, ZHANG Y, WANG L, BEI K, CHOU I M, HU H Q, PAN Z Y. Effects of vitrinite in low-rank coal on the structure and combustion ractivity of pyrolysis chars[J]. ACS Omega,2020,5(28):17314−17323. doi: 10.1021/acsomega.0c01542
    [14]
    GONG X Z, GUO Z C, WANG Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity[J]. Energy Fuels,2009,23(9):4547−4552. doi: 10.1021/ef900550w
    [15]
    LI X J, HAYASHI J, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a victorian brown coal[J]. Fuel,2006,85(12/13):1700−1707. doi: 10.1016/j.fuel.2006.03.008
    [16]
    赵慧明, 贾挺豪, 王美君, 鲍卫仁, 常丽萍. 昭通褐煤的热解提质及其对气化反应性能的影响[J]. 燃料化学学报,2016,44(8):904−910. doi: 10.3969/j.issn.0253-2409.2016.08.002

    ZHAO Hui-ming, JIA Ting-hao, WANG Mei-jun, BAO Wei-ren, CHANG Li-ping. Upgrading of Zhaotong coal by pyrolysis and its effect on the gasification reactivity[J]. J Fuel Chem Technol,2016,44(8):904−910. doi: 10.3969/j.issn.0253-2409.2016.08.002
    [17]
    LIU X F, YOU J L, WANG Y Y, LU L M, XIE Y F, YU L W, FU Q. Raman spectroscopic study on the pyrolysis of australian bituminous coal[J]. J Fuel Chem Technol,2014,42(3):270−276. doi: 10.1016/S1872-5813(14)60019-0
    [18]
    XU S P, ZENG X, HAN Z N, CHENG J G, WU R C, CHEN Z H, MASĔK O, FAN X F, XU G W. Quick pyrolysis of a massive coal sample via rapid infrared heating[J]. Appl Energy,2019,242:732−740. doi: 10.1016/j.apenergy.2019.03.079
    [19]
    WANG G J, HOU B L, ZHANG J, WANG H, GAO D Y, CHANG G Z, THALLADA B. Effect of pressure and H2 on the pyrolysis characteristics of lignite: Thermal behavior and coal char structural properties[J]. J Anal Appl Pyrolysis,2018,135:1−9. doi: 10.1016/j.jaap.2018.10.003
    [20]
    FAN C, YAN J W, HUANG Y R, HAN X X, JIANG X M. XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char[J]. Fuel,2015,139:502−510. doi: 10.1016/j.fuel.2014.09.021
    [21]
    余晓露, 白帆, 李志明. 衰减全反射-显微傅立叶变换红外光谱原位分析煤有机显微组分[J]. 石油实验地质,2012,34(6):664−670. doi: 10.11781/sysydz201206664

    YU Xiao-lu, BAI Fan, LI Zhi-ming. Application of attenuated total reflectance-micro-Fourier transform infrared (ATR-FTIR) spectroscopy to in situ study of coal macerals[J]. Pet Geol Exp,2012,34(6):664−670. doi: 10.11781/sysydz201206664
    [22]
    TIRONI A, TREZZA M A, SCIAN A N, IRASSAR E F. Kaolinitic calcined clays: Factors affecting its performance as pozzolans[J]. Constr Build Mater,2012,28(1):276−281. doi: 10.1016/j.conbuildmat.2011.08.064
    [23]
    OBOIRIEN B O, ENGELBRECHT A D, NORTH B C, DU CANN V M, VERRYN S, FALCON R. Study on the structure and gasification characteristics of selected south african bituminous coals in fluidised bed gasification[J]. Fuel Process Technol,2011,92(4):735−742. doi: 10.1016/j.fuproc.2010.08.013
    [24]
    ZHANG L, LI T T, QUYN D, DONG L, QIU P H, LI C Z. Structural transformation of nascent char during the fast pyrolysis of mallee wood and low-rank coals[J]. Fuel Process Technol,2015,138:390−396. doi: 10.1016/j.fuproc.2015.05.003
    [25]
    ZHANG L, KAJITANI S, UMEMOTO S, WANG S, QUYN D, SONG Y, LI T T, ZHANG S, DONG L, LI C Z. Changes in nascent char structure during the gasification of low-rank coals in CO2[J]. Fuel,2015,158:711−718. doi: 10.1016/j.fuel.2015.06.014
    [26]
    SHARMA A, MATSUMURA A. A comparative study on demineralization of coals by acid-washing and solvent-extraction methods for low temperature catalytic coal gasification application[J]. Carbon Resour Convers,2019,2(3):175−181. doi: 10.1016/j.crcon.2019.09.001
    [27]
    WANG M F, WANG J J, TAO S, TANG D, WANG C, YI J. Quantitative characterization of void and demineralization effect in coal based on dual-resolution X-ray computed tomography[J]. Fuel,2020,267:116836. doi: 10.1016/j.fuel.2019.116836
    [28]
    LIU J X, JIANG X M, HAN X X, SHEN J, ZHANG H. Chemical properties of superfine pulverized coals. Part 2. demineralization effects on free radical characteristics[J]. Fuel,2014,115:685−696. doi: 10.1016/j.fuel.2013.07.099
    [29]
    何选明. 煤化学[M]. 2版. 北京: 冶金工业出版社, 2014.

    HE Xuan-ming. Coal Chemistry[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2014.
    [30]
    毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰. 基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J]. 化工学报,2020,71(2):811−820.

    MAO Ning, WANG Qiang, YANG Yan, XU Dun-xin, FENG Wei, ZHANG Jin-peng, BAI Hong-cun, GUO Qing-jie. Pyrolysis characteristics and kinetics analysis of Qinghua coal, Ningxia based on chemical bonding characteristics of macerals[J]. CIESC J,2020,71(2):811−820.
    [31]
    XU J L, BAI Z Q, BAI J, KONG L X, LV D M, HAN Y N, DAI X, LI W. Physico-chemical structure and combustion properties of chars derived from co-pyrolysis of lignite with direct coal liquefaction residue[J]. Fuel,2017,187:103−110. doi: 10.1016/j.fuel.2016.09.028
    [32]
    MENG F R, YU J L, TAHMASEBI A, HAN Y N. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy Fuels,2013,27(6):2923−2932. doi: 10.1021/ef400411w
    [33]
    XU J, TANG H, SU S, LIU J W, XU K, QIAN K, WANG Y, ZHOU Y B, HU S, ZHANG A C, XIANG J. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals[J]. Appl Energy,2018,212:46−56. doi: 10.1016/j.apenergy.2017.11.094
    [34]
    赵云鹏, 胡浩权, 靳立军, 魏贤勇. 矿物质对不同还原程度煤显微组分半焦燃烧特性影响[J]. 化工学报,2019,70(8):2946−2953.

    ZHAO Yun-peng, HU Hao-quan, JIN Li-jun, WEI Xian-yong. Effect of minerals on semi-coke combustion characteristics of maceral with different reducibility[J]. CIESC J,2019,70(8):2946−2953.
    [35]
    ZHANG H, PU W X, HA S, LI Y, SUN M. The influence of included minerals on the intrinsic reactivity of chars prepared at 900 °C in a drop tube furnace and a muffle furnace[J]. Fuel,2009,88(11):2303−2310. doi: 10.1016/j.fuel.2009.05.014
    [36]
    SONG Y M, FENG W, LI N, LI Y, ZHI K D, TENG Y Y, HE R X, ZHOU H C, LIU Q S. Effects of demineralization on the structure and combustion properties of Shengli lignite[J]. Fuel,2016,183:659−667. doi: 10.1016/j.fuel.2016.06.109
    [37]
    HILLIG D M, POHLMANN J G, MANERA C, PERONDI D, PEREIRA F M, ALTAFINI C R, GODINHO M. Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions[J]. Energy,2020,202:117793. doi: 10.1016/j.energy.2020.117793
    [38]
    HINRICHS R, BROWN M T, VASCONCELLOS M A Z, ABRASHEV M V, KALKREUTH W. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy[J]. Int J Coal Geol,2014,136:52−58. doi: 10.1016/j.coal.2014.10.013
    [39]
    LÜNSDORF N K. Raman spectroscopy of dispersed vitrinite -Methodical aspects and correlation with reflectance[J]. Int J Coal Geol,2016,153:75−86. doi: 10.1016/j.coal.2015.11.010
    [40]
    MA C, ZOU C, ZHAO J X, HE J Y, ZHANG X R. Combustion behavior of chars derived from coal pyrolysis under a CO-containing atmosphere[J]. Thermochim Acta,2020,688:178576.
    [41]
    HAN Y N, LIAO J J, BAI Z Q, BAI J, LI X, LI W. Correlation between the combustion behavior of brown coal char and its aromaticity and pore structure[J]. Energy Fuels,2016,30(4):3419−3427. doi: 10.1021/acs.energyfuels.5b02755
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (567) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return