Volume 50 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LIANG Li-ping, GAO Fei, WANG Ya-ke, ZHU Bao-shun, LI Guo-min. Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 36-43. doi: 10.19906/j.cnki.JFCT.2021066
Citation: LIANG Li-ping, GAO Fei, WANG Ya-ke, ZHU Bao-shun, LI Guo-min. Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 36-43. doi: 10.19906/j.cnki.JFCT.2021066

Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue

doi: 10.19906/j.cnki.JFCT.2021066
Funds:  The project was supported by the National Natural Science Foundation of China (51802212), the Natural Science Foundation of Shanxi Province (201801D221119), the Scientific and Technological Innovation Programs of High Education Institutions in Shanxi (2019L0617) and Shanxi Postgraduate Innovation Project (2020SY415)
  • Received Date: 2021-05-27
  • Rev Recd Date: 2021-06-28
  • Available Online: 2021-07-19
  • Publish Date: 2022-01-25
  • With coal gangue (CG) as the carbon-containing carrier, starch as supplementary C source and nickel nitrate as Ni source, Ni/C/CG composite microwave absorbing materials were prepared by a solution impregnation and then a carbothermal reduction process. The influence of the carbothermal reduction temperature on the composition, microstructure and performance of materials was carefully studied. It was found that, the carbothermal reduction temperature had a great effect on the crystalline state of carbon and Ni, as well as the size of Ni particles, further greatly affected the electromagnetic properties, especially the dielectric properties of the materials. Due to the combination of good impedance match and strong microwave attenuation ability, the Ni/C/CG composites prepared under a wide temperature range of 600−800 ℃ all displayed excellent microwave absorption performance. For the sample heat-treated at 800 ℃, the minimum reflection loss could reach −20.9 dB at 12.9 GHz and the corresponding effective absorption band was 3.7 GHz with a coating thickness of only 2 mm. In addition, the dielectric loss was the dominant microwave absorption mechanism, which mainly originated from the conductive loss caused by the graphite carbon and Ni particles, and the interfacial polarization loss due to the existence of interface between Ni, C and CG.
  • loading
  • [1]
    GENUIS S J. Fielding a current idea: Exploring the public health impact of electromagnetic radiation[J]. Public Health,2008,122:113−124. doi: 10.1016/j.puhe.2007.04.008
    [2]
    陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449

    CHEN Xue-gang, YE Ying, CHENG Ji-peng. Research progress of electromagnetic wave absorbing materials with core-shell structure[J]. J Inorg Mater,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449
    [3]
    康越, 原博, 马天, 楚增勇, 张政军. 基于石墨烯的电磁波损耗材料研究进展[J]. 无机材料学报,2018,33(12):1259−1273. doi: 10.15541/jim20180178

    KANG Yue, YUAN Bo, MA Tian, CHU Zeng-yong, ZHANG Zheng-jun. Development of microwave absorbing materials based on graphene[J]. J Inorg Mater,2018,33(12):1259−1273. doi: 10.15541/jim20180178
    [4]
    何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能[J]. 物理学报,2018,67(22):9−28+438.

    HE Xue-min, ZHONG Wei, DU You-wei. Controllable synthesis and performance of magnetic nanocomposites with core-shell structure[J]. Acta Phys Sin,2018,67(22):9−28+438.
    [5]
    曹敏, 邓雨希, 徐康, 郝晓峰, 胡嘉裕, 杨喜. 新型碳基磁性复合吸波材料的研究进展[J]. 复合材料学报,2020,37(12):3004−3016.

    CAO Min, DENG Yu-xi, XU Kang, HAO Xiao-feng, HU Jia-yu, YANG Xi. Research progress of new carbon based magnetic composite electromagnetic waveabsorbing materials[J]. Acta Mater Compos Sin,2020,37(12):3004−3016.
    [6]
    WANG Z J, WU L N, ZHOU J G, CAI W, SHEN B Z, JIANG Z H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. J Phys Chem C,2013,117(10):5446−5452. doi: 10.1021/jp4000544
    [7]
    WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2(36):14940−14946. doi: 10.1039/C4TA02815E
    [8]
    ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloy Compd,2019,805:1071−1080. doi: 10.1016/j.jallcom.2019.07.177
    [9]
    LIU L, HE N, WU T, HU P B, TONG G X. Co/C/Fe/C Hierarchical flowers with strawberry-like surface as surface plasmon for Enhanced permittivity, permeability, and microwave absorption properties[J]. Chem Eng J,2019,355:103−108. doi: 10.1016/j.cej.2018.08.131
    [10]
    SHAN G, YANG S H, WANG H Y, WANG G S, YIN P G. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:439−444.
    [11]
    LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: A review[J]. J Clean Prod,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946
    [12]
    YAN S, ZHANG F Y, WANG L, RONG Y D, HE P G, JIA D C, YANG J L. A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters[J]. J Environ Manage,2019,246:174−183. doi: 10.1016/j.jenvman.2019.05.120
    [13]
    LI G M, MAO L T, Zhu B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. Novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8(40):14238−14245. doi: 10.1039/D0TC03633A
    [14]
    田君儒, 王晓敏, 梁丽萍, 力国民. 利用煤矸石制备负载Fe3O4的陶瓷复合材料及微波吸收性能研究[J]. 燃料化学学报,2021,49(9):1347−1353.

    TIAN Jun-ru, WANG Xiao-min, LIANG Li-ping, LI Guo-min. Preparation and Microwave Absorption of Fe3O4 Loaded Ceramic Composite by Recycling of Coal Gangue[J]. J Fuel Chem Technol,2021,49(9):1347−1353.
    [15]
    SHU R W, WU Y, LI Z Y, ZHANG J B, WAN Z L, LIU Y, ZHENG M D. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band[J]. Compos Sci Technol,2019,184:107839. doi: 10.1016/j.compscitech.2019.107839
    [16]
    YANG S, GUO X, CHEN P, XU D W, QIU H F, ZHU X Y. Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption[J]. J Alloys Compd,2019,797:1310−1319. doi: 10.1016/j.jallcom.2019.05.190
    [17]
    MA T, CUI Y, SHA Y L, LIU L, GE J W, MENG F D, WANG F H. Facile synthesis of hierarchically porous rGO/MnZn ferrite composites for enhanced microwave absorption performance[J]. Synth Met,2020,265:116407. doi: 10.1016/j.synthmet.2020.116407
    [18]
    MU J, PERLMUTTER D D. Thermal decomposition of metal nitrates and their hydrates[J]. Thermochim Acta,1982,56(3):253−260. doi: 10.1016/0040-6031(82)87033-0
    [19]
    LUO N, LI X J, WANG X H, YAN H H, ZHANG C J, WANG H T. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863. doi: 10.1016/j.carbon.2010.06.051
    [20]
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095−14107. doi: 10.1103/PhysRevB.61.14095
    [21]
    张立德, 牟季美. 纳米材料和纳米结构[M]. 北京: 科学出版社, 2020: 227−232.

    ZHANG Li-de, MOU Ji-mei. Nanomaterials and Nanostructures[M]. Beijing: Science Press, 2020: 227−232.
    [22]
    冯慈璋, 马西奎. 工程电磁场导论[M]. 北京: 高等教育出版社, 2000: 215−257.

    FENG Ci-zhang, MA Xi-kui. Introduction to Engineering Electromagnetic Field[M]. Beijing: Higher Education Press, 2000: 215−257.
    [23]
    陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982: 138−185.

    CHEN Ji-dan, LIU Zi-yu. Dielectric Physics[M]. Beijing: China Machine Press, 1982: 138−185.
    [24]
    XU X F, WANG G Z, WAN G P, SHI S H, HAO C C, TANG Y L, WANG G L. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chem Eng J,2020,382:122980. doi: 10.1016/j.cej.2019.122980
    [25]
    WANG F Y, SUN Y Q, LI D R, ZHONG B, WU Z G, ZUO S Y, YAN D, ZHUO R F, FENG J J, YAN P X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264−273. doi: 10.1016/j.carbon.2018.03.081
    [26]
    LIU Q T, LIU X F, FENG H B, SHUI H C, YU R H. Metal organic framework-derived fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber[J]. Chem Eng J,2017,314(15):320−327.
    [27]
    DENG L J, HAN M G. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability[J]. Appl Phys Lett,2007,91:023119. doi: 10.1063/1.2755875
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (681) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return