Volume 49 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
PEI Yong-li, GUO Chang-jiang, ZHANG Ning, QUAN Yan-hong, REN Jun. The progress in nanocatalyst preparation with atomic layer deposition technology[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1281-1293. doi: 10.19906/j.cnki.JFCT.2021068
Citation: PEI Yong-li, GUO Chang-jiang, ZHANG Ning, QUAN Yan-hong, REN Jun. The progress in nanocatalyst preparation with atomic layer deposition technology[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1281-1293. doi: 10.19906/j.cnki.JFCT.2021068

The progress in nanocatalyst preparation with atomic layer deposition technology

doi: 10.19906/j.cnki.JFCT.2021068
Funds:  The project was supported by the National Science Foundation of China (21776194) and the Natual Science Foundation of Shanxi Province of China (201901D211055)
More Information
  • Corresponding author: Tel: 0351-6018598. E-mail: renjun@tyut.edu.cn
  • Received Date: 2021-05-07
  • Rev Recd Date: 2021-07-01
  • Available Online: 2021-08-16
  • Publish Date: 2021-09-30
  • Nanocatalysis is facing a technological revolution, which puts forward higher requirements for the accurate control of the size distribution and morphology of metal nanoparticles. Atomic layer deposition (ALD) is proposed as solution to this problem because of its character of accurate controlling metal distribution on atomic level. In this review, the development history, deposition mechanism as well as equipment and technology are summarized. Subsequently, the substrate types and microstructure of obtained catalysts are discussed. In particular, the latest progress of the synthesis and application of metal catalysts prepared by ALD are highlighted. Lastly, the challenges and prospects in ALD are illustrated.
  • loading
  • [1]
    ZAERA F. Nanostructured materials for applications in heterogeneous catalysis[J]. Chem Soc Rev,2013,42(7):2746−2762. doi: 10.1039/C2CS35261C
    [2]
    BURD C, CHEN X B, NARAYANAN R, El-SAYED M A. Chemistry and properties of nanocrystals of different shapes[J]. Chem Rev,2005,105(4):1025−1102. doi: 10.1021/cr030063a
    [3]
    TANG M, YUAN W T, OU Y, LI G X, YOU R Y, LI S D, YANG H S, ZHANG Z, WANG Y. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: A review[J]. ACS Catal,2020,10:14419−14450. doi: 10.1021/acscatal.0c03335
    [4]
    ALEXIS T B. The impact of nanoscience in heterogeneous catalysis[J]. Science,2003,299:1688−1691. doi: 10.1126/science.1083671
    [5]
    KITANO M, INOUE Y, YAMAZAKI Y, HAYASHI F, KANBARA S, MATSUISHI S, YOKOYAMA T, KIM S, HARA M, HOSONO H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store[J]. Nat Chem,2012,4(11):934−940. doi: 10.1038/nchem.1476
    [6]
    REN M J, REN J, HAO P P, YANG J Z, WANG D L, PEI Y L, L J Y, LI Z. Influence of microwave irradiation on the structural properties of carbon-supported hollow copper nanoparticles and their effect on the synthesis of dimethyl carbonate[J]. ChemCatChem,2016,8(4):861−871. doi: 10.1002/cctc.201501182
    [7]
    LI Y, SHEN W J. Morphology-dependent nanocatalysts: Rod-shaped oxides[J]. Chem Soc Rev,2014,43(5):1543−1574. doi: 10.1039/C3CS60296F
    [8]
    HARUTA M, KOBAYASHI T, SANO H, YAMADA N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃[J]. Chem Lett,1987,16(2):405−408. doi: 10.1246/cl.1987.405
    [9]
    包信和. 催化基础理论研究发展浅析-兼述催化中的限域效应(代序)[J]. 中国科学: 化学,2012,42(4):355−362. doi: 10.1360/032012-130

    BAO Xin-he. Fundamental research in catalysis with emphasis on confinement effects[J]. Sci Sin Chim,2012,42(4):355−362. doi: 10.1360/032012-130
    [10]
    PAN X L, BAO X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Acc Chem Res,2011,44(8):553−562. doi: 10.1021/ar100160t
    [11]
    LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chem Soc Rev,2014,43(21):7245−7256. doi: 10.1039/C4CS00223G
    [12]
    WU Y E, WANG D S, LI Y D. Understanding of the major reactions in solution synthesis of functional nanomaterials[J]. Sci China Mater,2016,59(11):938−996. doi: 10.1007/s40843-016-5112-0
    [13]
    YIN P Q, YAO T, WU Y E, ZHENG L R, LIN Y, LIU W, JU H X, ZHU J F, HONG X, DDENG Z X, ZHOU G, WEI S Q, LI Y D. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew Chem,2016,55(36):10800−10805. doi: 10.1002/anie.201604802
    [14]
    JONES J, XIONG H F, DELARIVA A T, PETERSON E J, PHAM H, CHALLA S R, QI G S, OH S, WIEBENGA M H, HERNANDEZ X I P, WANG Y, DATYE A K. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science,2016,353(6295):150−154. doi: 10.1126/science.aaf8800
    [15]
    LIU J Y. Catalysis by supported single metal atoms[J]. ACS Catal,2017,7(1):34−59. doi: 10.1021/acscatal.6b01534
    [16]
    QIAO B T, WANG A Q, YANG X F, ALLARD L F, JIANG Z, CUI Y T, LIU J Y, LI J, ZHANG T. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem,2011,3(8):634−641. doi: 10.1038/nchem.1095
    [17]
    WU Z W, BUKOWSKI B C, LI Z, MILLIGAN C, ZHOU L, MA T, WU Y, REN Y, RIBEIRO F H, DELGASS W N, GREELEY J, ZHANG G H, MILLER J T M. Changes in catalytic and adsorptive properties of 2 nm pt3mn nanoparticles by subsurface atoms[J]. J Am Chem Soc,2018,140(44):14870−14877. doi: 10.1021/jacs.8b08162
    [18]
    HUA J L, WILDFIRE C, STIEGMAN A E, DAGLE R A, SHEKHAWAT D, ABDELSAYED V, BAI X W, TIAN H J, BOGLE M B, HSU C, LUO Y, DAVIDSON S D, WANG Y X. Microwave-driven heterogeneous catalysis for activation of dinitrogen to ammonia under atmospheric pressure[J]. Chem Eng J,2020,397:125388−125396. doi: 10.1016/j.cej.2020.125388
    [19]
    REN J, LIU S S, LI Z, LU X L, XIE K C. Oxidative carbonylation of methanol to dimethyl carbonate over CuCl/SiO2-TiO2 catalysts prepared by microwave heating: The effect of support composition[J]. Appl Catal A: Gen,2009,366(1):93−101. doi: 10.1016/j.apcata.2009.06.042
    [20]
    PUURUNEN R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process[J]. J Appl Phys,2005,97(12):1−52.
    [21]
    GEORGE S M. Atomic layer deposition: an overview[J]. Chem Rev,2010,110(1):111−131. doi: 10.1021/cr900056b
    [22]
    SINGH J A, YANG N, BENT S. Nanoengineering heterogeneous catalysts by atomic layer deposition[J]. Annu Rev Chem Biomol Eng,2017,8:41−62. doi: 10.1146/annurev-chembioeng-060816-101547
    [23]
    PUURUNEN B R. A short history of atomic layer deposition: tuomo suntola’s atomic layer epitaxy[J]. Chem Vap Depos,2014,20:332−344. doi: 10.1002/cvde.201402012
    [24]
    DAMERON A A, DAVIDSON S D, BURTON B B, CARCIA P F, MCLEAN R S, GEORGE S M. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J]. J Phys Chem C,2008,112(12):4573−4580. doi: 10.1021/jp076866+
    [25]
    PARSONS G N, GEORGE S M, KNEZ M, EDITORS G. Progress and future directions for atomic layer deposition and ALD-based chemistry[J]. MRS Bull,2011,36(11):865−871. doi: 10.1557/mrs.2011.238
    [26]
    SUN X, XIE M, TRAVIS J J, WANG G K, SUN H T, LIAN J, GEORGE S M. Pseudocapacitance of amorphous TiO2 thin films anchored to graphene and carbon nanotubes using atomic layer deposition[J]. J Phys Chem C,2013,117(44):22497−22508. doi: 10.1021/jp4066955
    [27]
    SUN X, ZHOU C G, XIE M, SUN H T, HU T, LU F Y, SCOTT S M, GEORGE S M, LIAN J. Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity[J]. J Mater Chem A,2014,2(20):7319−7326. doi: 10.1039/C4TA00589A
    [28]
    YANG H M, CHEN Y, QIN Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts[J]. Chin J Catal,2020,41(2):227−241. doi: 10.1016/S1872-2067(19)63440-6
    [29]
    GAO Z, DONG M, WANG G Z, SHENG P, WU Z W, YANG H M, ZHANG B, WANG G F, WANG J G, QIN Y. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions[J]. Angew Chem,2015,54(31):9006−9010. doi: 10.1002/anie.201503749
    [30]
    GAO Z, QIN Y. Design and properties of confined nanocatalysts by atomic layer deposition[J]. Acc Chem Res,2017,50(9):2309−2316. doi: 10.1021/acs.accounts.7b00266
    [31]
    ZHANG B, QIN Y. Interface tailoring of heterogeneous catalysts by atomic layer deposition[J]. ACS Catal,2018,8(11):10064−10081. doi: 10.1021/acscatal.8b02659
    [32]
    LU J L, ELAM J W, STAIR P C. Atomic layer deposition - sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis[J]. Surf Sci Rep,2016,71(2):410−472. doi: 10.1016/j.surfrep.2016.03.003
    [33]
    LU J L, ELAM J W, STAIR P C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition[J]. Acc Chem Res,2013,46(8):1806−1815. doi: 10.1021/ar300229c
    [34]
    STAIR P C. Synthesis of supported catalysts by atomic layer deposition[J]. Top Catal,2012,55:93−98. doi: 10.1007/s11244-012-9776-4
    [35]
    LU J L, LOW K B, LEI Y, LIBERA J A, NICHOLLS A, STAIR P C, ELAM J W. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition[J]. Nat Commun,2014,5:1−9.
    [36]
    ONEILL B J, JACKSON D H K., LEE J, CANLAS C, STAIR P C, MARSHALL C L, ELAM J W, KUECH T F, DUMESIC J A, HUBER G W. Catalyst design with atomic layer deposition[J]. ACS Catal,2015,5(3):1804−1825. doi: 10.1021/cs501862h
    [37]
    LEE W J, YUN E Y, LEE H B R, HONG S W, KWON S H. Ultrathin effective TiN protective films prepared by plasma-enhanced atomic layer deposition for high performance metallic bipolar plates of polymer electrolyte membrane fuel cells[J]. Appl Surf Sci,2020,519:146215−146224. doi: 10.1016/j.apsusc.2020.146215
    [38]
    POODT P, CAMERON D C, DICKEY E, GEORGE S M, KUZNETSOV V, PARSONS G N, ROOZEBOOM F, SUNDARAM G, VERMEER A. Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition[J]. J Vac Sci Technol, A,2012,30(1):010802−1-11. doi: 10.1116/1.3670745
    [39]
    LEE S, BAEK G, LEE J H, VAN T T N, ANSARI A S, SHONG B, PARK J S. Molecular layer deposition of indicone and organic-inorganic hybrid thin films as flexible transparent conductor[J]. Appl Surf Sci,2020,525:146383. doi: 10.1016/j.apsusc.2020.146383
    [40]
    VENKATASAMY V, JAYARAJU N, COX S M, THAMBIDURAI C, STICKNEY JL. Studies of Hg(1−x)CdxTe formation by electrochemical atomic layer deposition and investigations into bandgap engineering[J]. J Elecrochem Soc,2007,154(8):H720−725. doi: 10.1149/1.2745677
    [41]
    李爱东. 原子层沉积技术-原理及其应用[M]. 北京: 科学出版社, 2016.

    LI Ai-dong. Atomic Layer Deposition-Its Principle and Applications[M]. Beijing: The Science Press, 2016.
    [42]
    曹燕强, 李爱东. 等离子体增强原子层沉积原理与应用[J]. 加工、测量与设备,2012,49(7):483−490.

    CAO Yan-qiang, LI Ai-dong. Principle and applications of plasma enhanced atomic layer deposition[J]. Process, Meas Equip,2012,49(7):483−490.
    [43]
    YANG P, TONG X L, WANG G Z, GAO Z, GUO X Y, QIN Y. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing[J]. ACS Appl Mater Interfaces,2015,7(8):4772−4777. doi: 10.1021/am508508m
    [44]
    CHEN H, CHEN J T, SHAO L, WANG L, FU X Z, LUO J L. Minimum and well-dispersed platinum nanoparticles on 3D porous nickel for highly efficient electrocatalytic hydrogen evolution reaction enabled by atomic layer deposition[J]. Appl Surf Sci,2019,494:1091−1099. doi: 10.1016/j.apsusc.2019.07.251
    [45]
    SUN J W, WANG X, SONG Y Y, WANG Q Q, SONG Y M, YUAN D, ZHANG L X. Atomic layer deposition of ultra-trace Pt catalysts onto a titanium nitride nanowire array for electrocatalytic methanol oxidation[J]. Chem Commun,2019,55(88):13283−13286. doi: 10.1039/C9CC06370F
    [46]
    SU C Y, LIU B H, LIN T J, CHI Y M, KEI C C, WANG K W, PERNG T P. Carbon nanotube-supported Cu3N nanocrystals as a highly active catalyst for oxygen reduction reaction[J]. J Mater Chem A,2015,3(37):18983−18990. doi: 10.1039/C5TA04383B
    [47]
    KAO E, PARK H S., ZANG X N, LIN L W. Atomic layer deposition of TiO2 nanocoatings on ZnO nanowires for improved photocatalytic stability[J]. Int J Photoenergy,2019,2019:1−9.
    [48]
    REN D, GAO J, PAN L F, WANG Z W, LUO J S, ZAKEERUDDIN S M, HAGFELDT A, GRÄTZEL M. Atomic layer deposition of zno on cuo enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J]. Angew Chem,2019,58(42):15036−15040. doi: 10.1002/anie.201909610
    [49]
    KHALILY M A, PATIL B, YILMAZ E, UYAR T. Atomic layer deposition of pd nanoparticles on n-doped electrospun carbon nanofibers: optimization of orr activity of pd-based nanocatalysts by tuning their nanoparticle size and loading[J]. ChemNanoMat,2019,5(12):1540−1546. doi: 10.1002/cnma.201900483
    [50]
    DENG D H, NOVOSELOV K S, FU Q, ZHENG N F, TIAN Z Q, BAO X H. Catalysis with two-dimensional materials and their heterostructures[J]. Nat Nanotechnol,2016,11(3):218−230. doi: 10.1038/nnano.2015.340
    [51]
    LV P, ZHAO C Y, LEE W J, HUO S, KWON S H, FANG J, YANG Y. Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2[J]. Appl Surf Sci,2019,494:508−518. doi: 10.1016/j.apsusc.2019.07.131
    [52]
    SUN L W, L K, ZHANG Z S, HU X F, TIAN H Y, ZHANG Y B, YANG X G. MnO2-Graphene-oxide-scroll-TiO2 composite catalyst for low-temperature NH3-SCR of NO with good steam and SO2 resistance obtained by low-temperature carbon-coating and selective atomic layer deposition[J]. Catal Sci Technol,2019,9(7):1602−1608. doi: 10.1039/C9CY00132H
    [53]
    JANG E, KIM D W, HONG S H, PARK Y M, PARK T J. Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor[J]. Appl Surf Sci,2019,487:206−210. doi: 10.1016/j.apsusc.2019.05.035
    [54]
    WENG Z H, ZAERA F. Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: selective hydrogenation of cinnamaldehyde promoted by (SiO2-ALD)-Pt/Al2O3[J]. ACS Catal,2018,8(9):8513−8524. doi: 10.1021/acscatal.8b02431
    [55]
    LIN W W, CHEN H, LI J, CHEN K Q, LU X Y, OUYANG P K, FU J. Enhanced stability of Pt/C by the atomic layer deposition of porous MOx for the decarboxylation of oleic acid[J]. Catal Commun,2019,123:59−63. doi: 10.1016/j.catcom.2019.02.003
    [56]
    LI J Z, MAO N F, LI X, CHEN F F, LI Y W, JIANG K, HU Z G, CHU J H. Controllable fabrication of Bi2O3 nanoparticles by atomic layer deposition on TiO2 films and application in photodegradation[J]. Sol Energy Mater Sol Cells,2020,204:110218. doi: 10.1016/j.solmat.2019.110218
    [57]
    CAO K, CAI J M, LIU X CHEN R. Review article: catalysts design and synthesis via selective atomic layer deposition[J]. J Vac Sci Technol, A,2018,36(1):010801. doi: 10.1116/1.5000587
    [58]
    SEONG S, PARK I S, JUNG Y C, LEE T, KIM S Y, PARK J S, KO J H, AHN J. Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition[J]. Mater Des,2019,177:107831. doi: 10.1016/j.matdes.2019.107831
    [59]
    ZHANG J K, YU Z B, GAO Z, GE H B, ZHAO S C, CHEN C Q, CHEN S, TONG X L, WANG M H, ZHENG Z F, QIN Y. Porous TiO2 Nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production[J]. Angew Chem,2017,129(3):816−820.
    [60]
    XU T T, SUN K, GAO D W, LI C C, HU X, CHEN G Z. Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions[J]. Chem Commun,2019,55(53):7651−7654. doi: 10.1039/C9CC02727K
    [61]
    GE H B, ZHANG B, GU X M, LIANG H J, YANG H M, GAO Z, WANG J G, QIN Y. A tandem catalyst with multiple metal oxide interfaces produced by atomic layer deposition[J]. Angew Chem,2016,55(25):7081−7085. doi: 10.1002/anie.201600799
    [62]
    LIU M, LI X L, KARUTURI S K, TOK A L Y, FAN H J. Atomic layer deposition for nanofabrication and interface engineering[J]. Nanoscale,2012,4(5):1522−1528. doi: 10.1039/c2nr11875k
    [63]
    HU Q, CAO K, LANG Y, CHEN R, CHU S Q, JIA L W, YUE J, SHAN B. Improved NO–CO reactivity of highly dispersed Pt particles on CeO2 nanorod catalysts prepared by atomic layer deposition[J]. Catal Sci Technol,2019,9(10):2664−2672. doi: 10.1039/C9CY00212J
    [64]
    WANG G H, LUO F, CAO K, ZHANG Y H, LI J L, ZHAO F Z, CHEN R, HONG J P. Effect of Ni content of Ni/γ-Al2O3 catalysts prepared by the atomic layer deposition method on CO2 reforming of methane[J]. Energy Technol,2019,7(5):1−9.
    [65]
    LU J L, FU B S, KUNG M C, XIAO G M, ELAM J W, KUNG H H, STAIR P C. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition[J]. Science,2012,335:1205−1208. doi: 10.1126/science.1212906
    [66]
    LITTLEWOOD P, LIU S, WEITZ E, MARKS T J, STAIR P C. Ni-alumina dry reforming catalysts: atomic layer deposition and the issue of Ni aluminate[J]. Catal Today,2020,343:18−25. doi: 10.1016/j.cattod.2019.03.040
    [67]
    HSU I J, KIMMEL Y C, JIANG X Q, WILLIS B G, CHEN J G. Atomic layer deposition synthesis of platinum-tungsten carbide core-shell catalysts for the hydrogen evolution reaction[J]. Chem Commun,2012,48(7):1063−1065. doi: 10.1039/C1CC15812K
    [68]
    YOU J H, GUO Y Z. Atomic layer deposition of fcc-FePt nanoparticles on g-C3N4 for magnetically recyclable photocatalysts with enhanced photocatalytic performance[J]. Ceram Int,2019,45(2):2451−2456. doi: 10.1016/j.ceramint.2018.10.171
    [69]
    YANG J, FU W Z, CHEN C Q, CHEN W Y, HUANG W G, YANG R O, KONG Q Q, ZHANG B Y, ZHAO J X, CHEN C M, LUO J, YANG F, DUAN X Z, JIANG Z, QIN Y. Atomic design and fine-tuning of subnanometric Pt catalysts to tame hydrogen generation[J]. ACS Catal,2021,11(7):4146−4156. doi: 10.1021/acscatal.0c04614
    [70]
    YAN H, CHENG H, YI H, LIN Y, YAO T, WANG C L, LI J J, WEI S Q, LU J L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene[J]. J Am Chem Soc,2015,137(33):10484−10487. doi: 10.1021/jacs.5b06485
    [71]
    LU J L, STAIR P C. Low-temperature ABC-type atomic layer deposition: Synthesis of highly uniform ultrafine supported metal nanoparticles[J]. Angew Chem,2010,49(14):2547−2551. doi: 10.1002/anie.200907168
    [72]
    CHENG N, STAMBULA S, WANG D, BANIS M N, LIU J, RIESE A, XIAO B W, LI R Y, SHAM T K, LIU L M, BOTTON G, SUN X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat Commun,2016,7:13638. doi: 10.1038/ncomms13638
    [73]
    YAN H, LIN Y, WU H, ZHANG W H, SUN Z H, CHENG H, LIU W, WANG C L, LI J J, HUANG X H, YAO T, YANG J L, WEI S Q, LU J L. Bottom-up precise synthesis of stable platinum dimers on graphene[J]. Nat Commun,2017,8(1):1−10. doi: 10.1038/s41467-016-0009-6
    [74]
    ZHANG L, SI R T, LIU H S, CHEN N, WANG Q, ADAIR K, WANG Z Q, CHEN J T, SONG Z X, LI J J, BANIS M N, LI R Y, SHAM T K, GU M, LIU L M, BOTTON G A, SUN X L. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction[J]. Nat Commun,2019,10(1):1−11. doi: 10.1038/s41467-018-07882-8
    [75]
    ADHIKARI S, SELVARAJ S, KIM D H. Construction of heterojunction photoelectrode via atomic layer deposition of Fe2O3 on Bi2WO6 for highly efficient photoelectrochemical sensing and degradation of tetracycline[J]. Appl Catal B: Environ,2019,244:11−24. doi: 10.1016/j.apcatb.2018.11.043
    [76]
    JEONG M G, KIM S Y, KIM D H, HAN S W, KIM I H, LEE M, HWANG Y K, KIM Y D. High-performing and durable MgO/Ni catalysts via atomic layer deposition for CO2 reforming of methane (CRM)[J]. Appl Catal A: Gen,2016,515:45−50. doi: 10.1016/j.apcata.2016.01.032
    [77]
    FENG J H, XIONG S, WANG Y. Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes[J]. Compos Commun,2019,12:39−46. doi: 10.1016/j.coco.2018.12.007
    [78]
    LIN C, JANG J B, ZHANG L H, STACH E A, GORTE R J. Improved coking resistance of “intelligent” Ni catalysts prepared by atomic layer deposition[J]. ACS Catal,2018,8(8):7679−7687. doi: 10.1021/acscatal.8b01598
    [79]
    MERKI D, VRUBEL H, ROVELLI L, FIERRO S, HU X L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution[J]. Chem Sci,2012,3(8):2515−2525. doi: 10.1039/c2sc20539d
    [80]
    KONG D S, CHA J J., WANG H T, LEE H R, YI C. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy Environ Sci,2013,6(12):3553−3558. doi: 10.1039/c3ee42413h
    [81]
    STASZAK-JIRKOVSKÝ J, MALLIAKAS C D, LOPES P P, DANILOVIC N, KOTA S S, CHANG K C, GENORIO B, STRMCNIK D, STAMENKOVIC V R, KANATZIDIS M G. MARKOVIC N M. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction[J]. Nat Mater,2016,15(2):197−203. doi: 10.1038/nmat4481
    [82]
    KIM D, SONG J G, YANG H, LEE H, PARK J, KIM H. Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of cobalt sulfide[J]. Nanoscale,2019,11(3):844−850. doi: 10.1039/C8NR08969H
    [83]
    HUANG Y Z, LIU L, LIU X L. Modulated electrochemical oxygen evolution catalyzed by MoS2 nanoflakes from atomic layer deposition (ALD)[J]. Nanotechnology,2018,30(9):095402.
    [84]
    MCNEARY W W, ZACCARINE S F, LAI A, LINICO A E, PYLYPENKO S, WEIMER A W. Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment[J]. Appl Catal B: Environ,2019,254:587−593. doi: 10.1016/j.apcatb.2019.05.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (645) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return