Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
TANG Zi-yue, CHEN Wei, HU Jun-hao, YANG Hai-ping, CHEN Ying-quan, CHEN Han-ping. Microalgae co-pyrolysis with waste plastics to prepare low-O/N and hydrocarbon-rich liquid oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1860-1866. doi: 10.19906/j.cnki.JFCT.2021070
Citation: TANG Zi-yue, CHEN Wei, HU Jun-hao, YANG Hai-ping, CHEN Ying-quan, CHEN Han-ping. Microalgae co-pyrolysis with waste plastics to prepare low-O/N and hydrocarbon-rich liquid oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1860-1866. doi: 10.19906/j.cnki.JFCT.2021070

Microalgae co-pyrolysis with waste plastics to prepare low-O/N and hydrocarbon-rich liquid oil

doi: 10.19906/j.cnki.JFCT.2021070
Funds:  The project was supported by the National Natural Science Foundation of China (51906082, 51861130362) and the China Postdoctoral Science Foundation (2019M662617)
  • Received Date: 2021-05-27
  • Rev Recd Date: 2021-07-05
  • Available Online: 2021-08-10
  • Publish Date: 2021-12-29
  • In order to reduce N-/O-compounds content and improve the quality of microalgae bio-oil, the co-pyrolysis/catalytic of Nannochloropsis sp. (NS) and polyethylene (LDPE) were studied in a fixed bed, and the distribution of N and O was discussed, as well as the interaction between microalgae and LDPE and the influence of the addition of catalyst. It was found that co-pyrolysis could effectively inhibit the transformation of O and N to oil, and promote the O release as H2O and N conversion to gas products. In addition, plastic adding significantly reduced the content of O-/N-compounds in oil, such as carboxylic acid, amide and N-heterocyclic, and increased the aliphatics content. Besides, it effectively promoted the formation of hydrocarbon gas, and showed a certain synergistic effect on CO and H2, and the interaction reached the maximum at 25%LDPE. Furthermore, ZSM-5 could promote the formation of hydrocarbon gas, increase the LHV of gas products (35.6 MJ/Nm3), and further reduce the nitrogen compounds in the oil, while the N in microalgae transferred to gas, and O converted to gas and H2O, which resulted in the further reduction of the O and N contents in the oil. Moreover, catalytic co-pyrolysis could inhibit the formation of aromatic hydrocarbons to a certain extent and improve the selectivity of aliphatic hydrocarbons.
  • loading
  • [1]
    唐晓莲. 秸秆转化成生物质燃料的应用技术研究[J]. 能源化工,2021,42(2):14−17. doi: 10.3969/j.issn.1006-7906.2021.02.004

    TANG Xiao-lian. Study on appliciation of straw conversion to biomass fuel[J]. Energy Chem Ind,2021,42(2):14−17. doi: 10.3969/j.issn.1006-7906.2021.02.004
    [2]
    ROSS, A B, BILLER P, KUBACKI M L, LI H, LEA–LANGTON A, JONES J M. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel,2010,89(9):2234−2243. doi: 10.1016/j.fuel.2010.01.025
    [3]
    LI F H, SRIKANTH C S, SANKAR B. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds[J]. Renewable Sustainable Energy Rev,2019,108:481−497. doi: 10.1016/j.rser.2019.03.026
    [4]
    BACH Q V, CHEN W H, Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review[J]. Bioresour Technol, 2017, 246: 88–100.
    [5]
    AYSU T M, MAROTO-VALER M M, SANNA A. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis[J]. Bioresour Technol,2016,208:140−148. doi: 10.1016/j.biortech.2016.02.050
    [6]
    AZIZI K, MOSTAFA K M, HAMED A N. A review on bio-fuel production from microalgal biomass by using pyrolysis method[J]. Renewable Sustainable Energy Rev,2018,82:3046−3059. doi: 10.1016/j.rser.2017.10.033
    [7]
    CAMPANELLA A, MICHAEL P H. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts[J]. Biomass Bioenergy,2012,46:218−232. doi: 10.1016/j.biombioe.2012.08.023
    [8]
    SUNG W K, BON S K, DONG H L. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed[J]. Bioresour Technol,2014,162:96−102. doi: 10.1016/j.biortech.2014.03.136
    [9]
    毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平, 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报, 2020, 48(3): 286–292.

    MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. J Fuel Chem Technol, 2020, 48(3): 286–292.
    [10]
    RANJEET K M, KAUSTUBHA M. Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals[J]. Carbon Resour Convers,2020,3:145−155. doi: 10.1016/j.crcon.2020.11.001
    [11]
    GHORBANNEZHAD P, SUNKYU P, JUDE A O. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products[J]. Waste Manage,2020,102:909−918. doi: 10.1016/j.wasman.2019.12.006
    [12]
    EYLEM O, BASAK B U, AYSE E P. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conv Manag,2014,78:704−710. doi: 10.1016/j.enconman.2013.11.022
    [13]
    WANG Y Z, LI Y J, ZHANG C X, YANG L G, FAN X X, CHU L Z. A study on co-pyrolysis mechanisms of biomass and polyethylene via ReaxFF molecular dynamic simulation and density functional theory[J]. Process Saf Environ Protect,2021,150:22−35. doi: 10.1016/j.psep.2021.04.002
    [14]
    CHEN R J, ZHANG S Y, YANG X X, LI G H, ZHOU H, LI Q H, ZHANG Y G. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics[J]. Waste Manag,2021,126:331−339. doi: 10.1016/j.wasman.2021.03.001
    [15]
    PAN P, HU C W, YANG W Y, LI Y S, DONG L L, ZHU L F, TONG D M, QING R W, FAN Y. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils[J]. Bioresour Technol,2010,101(12):4593−4599. doi: 10.1016/j.biortech.2010.01.070
    [16]
    DU Z Y, HU B, MA X C, CHENG Y L, LIU Y H, LIN X Y, WAN Y Q, LEI H W, CHEN P, ROGER R. Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids[J]. Bioresour Technol,2013,130:777−782. doi: 10.1016/j.biortech.2012.12.115
    [17]
    RAHMAN M H, PRAKASHBHAI R B, ARPITA S, VIVEK P, SUSHIL A. Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid[J]. Energy,2021,225:120231.
    [18]
    XU S N, CAO B, UZOEJINWA B B, ODEY E A, WANG S, SHANG H, LI C H, HU Y M, WANG Q, NWAKAIRE J N. Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics[J]. Process Saf Environ Protect,2020,137:34−48. doi: 10.1016/j.psep.2020.02.001
    [19]
    QI P Y, CHANG G Z, WANG H C, ZHANG X L, GUO Q J. Production of aromatic hydrocarbons by catalytic co–pyrolysis of microalgae and polypropylene using HZSM-5[J]. J Anal Appl Pyrolysis,2018,136:178−185. doi: 10.1016/j.jaap.2018.10.007
    [20]
    AUGUSTINA E, DOAN P M, DAMIEN L, CARLOS P, PATRICK S, ANGE N. Co–pyrolysis of wood and plastics: Influence of plastic type and content on product yield, gas composition and quality[J]. Fuel,2018,231:110−117. doi: 10.1016/j.fuel.2018.04.140
    [21]
    XU X W, TU R, SUN Y, LI Z Y, JIANG E. Influence of biomass pretreatment on upgrading of bio-oil: Comparison of dry and hydrothermal torrefaction[J]. Bioresour Technol,2018,262:261−270. doi: 10.1016/j.biortech.2018.04.037
    [22]
    TANG Z Y, CHEN W, HU J H, LI S Q, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresour Technol,2020,311:123502. doi: 10.1016/j.biortech.2020.123502
    [23]
    CHEN W, CHEN Y Q, YANG H P, XIA M W, LI K X, CHEN X, CHEN H P. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect[J]. Bioresour Technol,2017,245:860−868. doi: 10.1016/j.biortech.2017.09.022
    [24]
    LI J, LIU Y W, SHI J Y, WANG Z Y, HU L, YANG X, WANG C X. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR[J]. Thermochimica Acta,2008,467(1):20−29.
    [25]
    DEBIAGI P E A, TRINCHERA M, FRASSOLDATI A, FARAVELLI T, RAVIKRISHNAN V, ELISEO R. Algae characterization and multistep pyrolysis mechanism[J]. J Anal Appl Pyrolysis,2017,128:423−436. doi: 10.1016/j.jaap.2017.08.007
    [26]
    WANG J J, MA X Q, YU Z S, PENG X W, LIN Y S. Studies on thermal decomposition behaviors of demineralized low-lipid microalgae by TG-FTIR[J]. Thermochim Acta,2018,660:101−109. doi: 10.1016/j.tca.2018.01.001
    [27]
    CHEN W, CHEN Y Q, YANG H P, LI K X, CHEN X, CHEN H P. Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature[J]. Bioresour Technol, 2018, 249(Supplement C): 247–253.
    [28]
    WANG K G, ROBERT C B. Catalytic pyrolysis of microalgae for production of aromatics and ammonia[J]. Green Chem,2013,15(3):675. doi: 10.1039/c3gc00031a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (438) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return