Volume 50 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHAO Sheng-ying, GENG Hai-lun, XU Bing, WU Xue-mei, TAN Ming-hui, YANG Guo-hui, TAN Yi-sheng. Research progress on mordenite catalyzed carbonylation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 166-179. doi: 10.19906/j.cnki.JFCT.2021083
Citation: ZHAO Sheng-ying, GENG Hai-lun, XU Bing, WU Xue-mei, TAN Ming-hui, YANG Guo-hui, TAN Yi-sheng. Research progress on mordenite catalyzed carbonylation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 166-179. doi: 10.19906/j.cnki.JFCT.2021083

Research progress on mordenite catalyzed carbonylation of dimethyl ether

doi: 10.19906/j.cnki.JFCT.2021083
Funds:  The project was supported by the National Natural Science Foundation of China (21978312, 21908235), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-JSC043), International Partnership Program of Chinese Academy of Sciences (122214KYSB20170007), Research Project Supported by Shanxi Scholarship Council of China and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province
  • Received Date: 2021-07-28
  • Rev Recd Date: 2021-09-04
  • Available Online: 2021-10-08
  • Publish Date: 2022-02-12
  • The carbonylation reaction of dimethyl ether is an important carbon addition reaction with directed insertion of carbon monoxide into dimethyl ether molecule, which is of great significance in industrial production. In recent years, it has been found that inexpensive mordenite has higher activity and very excellent carbonylation product selectivity for catalyzing the carbonylation reaction of dimethyl ether, hence widely studied. This review surveys researches on mordenite catalyzed carbonylation of dimethyl ether, introduces the mechanism of carbonylation reaction, and summarizes the various methods of controlling the acidic sites inside mordenite and their effects on the carbonylation reaction.
  • loading
  • [1]
    SUNLEY G J, WATSON D J. High productivity methanol carbonylation catalysis using iridium - The Cativa (TM) process for the manufacture of acetic acid[J]. Catal Today,2000,58(4):293−307. doi: 10.1016/S0920-5861(00)00263-7
    [2]
    王玉和, 贺德华, 徐柏庆. 甲醇羰基化制乙酸[J]. 化学进展,2003,(3):215−221. doi: 10.3321/j.issn:1005-281X.2003.03.007

    WANG Yu-he, HE De-hua, XU Bo-qing. Studies of producing acetic acid by carbonylation of methanol[J]. Prog Chem,2003,(3):215−221. doi: 10.3321/j.issn:1005-281X.2003.03.007
    [3]
    WEGMAN R W. Vapor-phase carbonylation of methanol or dimethyl ether with metal-ion exchanged heteropoly acid catalysts[J]. J Chem Soc Chem Comm,1994,(8):947−948. doi: 10.1039/c39940000947
    [4]
    CHEUNG P, BHAN A, SUNLEY G J, IGLESIA E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem Int Ed Eng,2006,45(10):1617−1620. doi: 10.1002/anie.200503898
    [5]
    SAN X G, ZHANG Y, SHEN W J, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fues,2009,23(5/6):2843−2844.
    [6]
    LI X, SAN X, ZHANG Y, ICHII T, MENG M, TAN Y, TSUBAKI N. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts[J]. ChemSusChem,2010,3(10):1192−1199. doi: 10.1002/cssc.201000109
    [7]
    BHAN A, ALLIAN A D, SUNLEY G J, LAW D J, IGLESIA E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J Am Chem Soc,2007,129(16):4919−4924. doi: 10.1021/ja070094d
    [8]
    FENG X, YAO J, LI H, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. A brand new zeolite catalyst for carbonylation reaction[J]. Chem Commun,2019,55(8):1048−1051. doi: 10.1039/C8CC08411D
    [9]
    LUSARDI M, CHEN T T, KALE M, KANG J H, NEUROCK M, DAVIS M E. Carbonylation of dimethyl ether to methyl acetate over SSZ-13[J]. ACS Catal,2019,10(1):842−851.
    [10]
    JUNG H S, XUAN N T, BAE J W. Carbonylation of dimethyl ether on ferrierite zeolite: Effects of crystallinity to coke distribution and deactivation[J]. Microporous Mesoporous Mater,2021,310:110669.
    [11]
    HAM H, JUNG H S, KIM H S, KIM J, CHO S J, LEE W B, PARK M J, BAE J W. Gas-phase carbonylation of dimethyl ether on the stable seed-derived ferrierite[J]. ACS Catal,2020,10(9):5135−5146. doi: 10.1021/acscatal.9b05144
    [12]
    SANO T, WAKABAYASHI S, OUMI Y, UOZUMI T. Synthesis of large mordenite crystals in the presence of aliphatic alcohol[J]. Microporous Mesoporous Mater,2001,46(1):67−74. doi: 10.1016/S1387-1811(01)00285-2
    [13]
    SIMONCIC P, ARMBRUSTER T. Peculiarity and defect structure of the natural and synthetic zeolite mordenite: A single-crystal X-ray study[J]. Am Mineral,2004,89(2/3):421−431. doi: 10.2138/am-2004-2-323
    [14]
    MEIER W Μ. The crystal structure of mordenite (ptilolite)[J]. Z Krist-Cryst Mater,1961,115(1/6):439−450. doi: 10.1524/zkri.1961.115.16.439
    [15]
    FERNANDES L D, MONTEIRO J L F, SOUSA-AGUIAR E F, MARTINEZ A, CORMA A. Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure[J]. J Catal,1998,177(2):363−377. doi: 10.1006/jcat.1998.2111
    [16]
    TSAI T C, CHEN W H, LAI C S, LIU S B, WANG I, KU C S. Kinetics of toluene disproportionation over fresh and coked H-mordenite[J]. Catal Today,2004,97(4):297−302. doi: 10.1016/j.cattod.2004.07.013
    [17]
    LU K, HUANG J, REN L, LI C, GUAN Y, HU B, XU H, JIANG J, MA Y, WU P. High ethylene selectivity in methanol-to-olefin (MTO) reaction over MOR-zeolite nanosheets[J]. Angew Chem Int Ed Eng,2020,59(15):6258−6262. doi: 10.1002/anie.202000269
    [18]
    ISSA H, TOUFAILY J, HAMIEH T, COMPAROT J D, SACHSE A, PINARD L. Mordenite etching in pyridine: Textural and chemical properties rationalized by toluene disproportionation and n-hexane cracking[J]. J Catal,2019,374:409−421. doi: 10.1016/j.jcat.2019.05.004
    [19]
    BLAY V, LOUIS B, MIRAVALLES R, YOKOI T, PECCATIELLO K A, CLOUGH M, YILMAZ B. Engineering zeolites for catalytic cracking to light olefins[J]. ACS Catal,2017,7(10):6542−6566. doi: 10.1021/acscatal.7b02011
    [20]
    WULFERS M J, JENTOFT F C. Identification of carbonaceous deposits formed on H-mordenite during alkane isomerization[J]. J Catal,2013,307:204−213. doi: 10.1016/j.jcat.2013.07.011
    [21]
    SEGAWA K, SHIMURA T. Effect of dealumination of mordenite by acid-leaching for selective synthesis of ethylenediamine from ethanolamine[J]. Appl Catal A: Gen,2000,194:309−317.
    [22]
    马猛. 丝光沸石形貌调控及二甲醚羰基化反应研究[D]. 北京: 中国科学院大学, 2018.

    MA Meng. Shape control of mordenite and its catalytic performance for dimethyl carbonyl carbonylation[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [23]
    FUJIMOTO K, SHIKADA T, OMATA K, TOMINAGA H. Vapor-phase carbonylation of methanol with solid acid catalysts[J]. Chem Lett,1984,(12):2047−2050.
    [24]
    CHEUNG P, BHAN A, SUNLEY G J, LAW D J, IGLESIA E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. J Catal,2007,245(1):110−123. doi: 10.1016/j.jcat.2006.09.020
    [25]
    LIU Z Q, YI X F, WANG G R, TANG X M, LI G C, HUANG L, ZHENG A M. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: From the perspective of molecular adsorption and diffusion[J]. J Catal,2019,369:335−344. doi: 10.1016/j.jcat.2018.11.024
    [26]
    LIU S P, LIU H C, MA X G, LIU Y, ZHU W L, LIU Z M. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catal Sci Technol,2020,10(14):4663−4672. doi: 10.1039/D0CY00125B
    [27]
    LIU J L, XUE H F, HUANG X M, WU P H, HUANG S J, LIU S B, SHEN W J. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chin J Catal,2010,31(7):729−738. doi: 10.1016/S1872-2067(09)60081-4
    [28]
    XUE H F, HUANG X M, ZHAN E S, MA M, SHEN W J. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catal Commun,2013,37:75−79. doi: 10.1016/j.catcom.2013.03.033
    [29]
    ZHAN H M, HUANG S Y, LI Y, LV J, WANG S P, MA X B. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR[J]. Catal Sci Technol,2015,5(9):4378−4389. doi: 10.1039/C5CY00460H
    [30]
    LU P, CHEN Q J, YANG G H, TAN L, FENG X B, YAO J, YONEYAMA Y, TSUBAKI N. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catal,2020,10(2):1366−1374. doi: 10.1021/acscatal.9b02891
    [31]
    周慧. 分子筛催化二甲醚羰基化反应制备乙酸甲酯研究[D]. 北京: 中国科学院大学, 2016.

    ZHOU Hui. Studies on carbonylation of dimethyl ether catalyzed by zeolites[D]. Beijing: University of Chinese Academy of Sciences, 2016.
    [32]
    BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys Chem Chem Phys,2011,13(7):2603−2612. doi: 10.1039/c0cp01996h
    [33]
    ZHOU W, KANG J, CHENG K, HE S, SHI J, ZHOU C, ZHANG Q, CHEN J, PENG L, CHEN M, WANG Y. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew Chem Int Ed Eng,2018,57(37):12012−12016. doi: 10.1002/anie.201807113
    [34]
    BORONAT M, MARTINEZ-SANCHEZ C, LAW D, CORMA A. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J Am Chem Soc,2008,130(48):16316−16323. doi: 10.1021/ja805607m
    [35]
    LI B J, XU J, HAN B, WANG X M, QI G D, ZHANG Z F, WANG C, DENG F. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. J Phys Chem C,2013,117(11):5840−5847. doi: 10.1021/jp400331m
    [36]
    HE T, REN P, LIU X, XU S, HAN X, BAO X. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chem Commun,2015,51(94):16868−16870. doi: 10.1039/C5CC07201H
    [37]
    RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, STUDT F, MOSES P G, ROSSMEISL J, RIISAGER A, JENSEN A D. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angew Chem Int Ed Eng,2015,54(25):7261−7264. doi: 10.1002/anie.201410974
    [38]
    CHENG Z Z, HUANG S Y, LI Y, CAI K, WANG Y, WANG M Y, LV J, MA X B. Role of Bronsted acid sites within 8-MR of mordenite in the deactivation roadmap for dimethyl ether carbonylation[J]. ACS Catal,2021,11(9):5647−5657. doi: 10.1021/acscatal.1c00159
    [39]
    WANG X S, LI R J, YU C C, LIU Y X, XU C M, LU C X. Study on the deactivation process of dimethyl ether carbonylation reaction over mordenite catalyst[J]. Fuel,2021,286.
    [40]
    LIU Z, NUTT M A, IGLESIA E. The effects of CO2, CO and H2 co-reactants on methane reactions catalyzed by Mo/H-ZSM-5[J]. Catal Lett,2002,81(3/4):271−279.
    [41]
    XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Ind Eng Chem Res,2013,52(33):11510−11515. doi: 10.1021/ie400909u
    [42]
    YAO J, WU Q, FAN J, KOMIYAMA S, YONG X, ZHANG W, ZHAO T, GUO Z, YANG G, TSUBAKI N. A carbonylation zeolite with specific nanosheet structure for efficient catalysis[J]. ACS Nano,2021,15(8):13568−13578. doi: 10.1021/acsnano.1c04419
    [43]
    ASPROMONTE S G, MIRO E E, BOIX A V. Effect of Ag-Co interactions in the mordenite on the NOx SCR with butane and toluene[J]. Catal Commun,2012,28:105−110. doi: 10.1016/j.catcom.2012.08.021
    [44]
    DE OLIVEIRA A M, CRIZEL L E, DA SILVEIRA R S, PERGHER S B C, BAIBICH I M. NO decomposition on mordenite-supported Pd and Cu catalysts[J]. Catal Commun,2007,8(8):1293−1297. doi: 10.1016/j.catcom.2006.11.027
    [45]
    GUPTA N M, KAMBLE V S, RAO K A, IYER R M. Co adsorption desorption properties of cation-exchanged NaX zeolite and supported ruthenium[J]. J Catal,1989,120(2):432−443. doi: 10.1016/0021-9517(89)90283-2
    [46]
    BENCO L, BUCKO T, HAFNER J, TOULHOAT H. Ab initio simulation of Lewis sites in mordenite and comparative study of the strength of active sites via CO adsorption[J]. J Phys Chem B,2004,108(36):13656−13666. doi: 10.1021/jp048056t
    [47]
    WANG S, GUO W, ZHU L, WANG H, QIU K, CEN K. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. J Phys Chem C,2014,119(1):524−533.
    [48]
    YANG G H, SAN X G, JIANG N, TANAKA Y, LI X G, JIN Q, TAO K, MENG F Z, TSUBAKI N. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catal Today,2011,164(1):425−428. doi: 10.1016/j.cattod.2010.10.027
    [49]
    KHANDAN N, KAZEMEINI M, AGHAZIARATI M. Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether[J]. Appl Catal A: Gen,2008,349(1/2):6−12. doi: 10.1016/j.apcata.2008.07.029
    [50]
    BLASCO T, BORONAT M, CONCEPCION P, CORMA A, LAW D, VIDAL-MOYA J A. Carbonylation of methanol on metal-acid zeolites: Evidence for a mechanism involving a multisite active center[J]. Angew Chem Int Ed Eng,2007,46(21):3938−3941. doi: 10.1002/anie.200700029
    [51]
    ZHANG X, LI Y P, QIU S B, WANG T J, MA L L, ZHANG Q, DING M Y. Effect of calcination temperature on catalytic activity and textual property of Cu/HMOR catalysts in dimethyl ether carbonylation reaction[J]. Chin J Chem Phys,2013,26(2):220−224. doi: 10.1063/1674-0068/26/02/220-224
    [52]
    REULE A A C, SEMAGINA N. Zinc hinders deactivation of copper-mordenite: Dimethyl ether carbonylation[J]. ACS Catal,2016,6(8):4972−4975. doi: 10.1021/acscatal.6b01464
    [53]
    REULE A A C, PRASAD V, SEMAGINA N. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2018,263:220−230. doi: 10.1016/j.micromeso.2017.12.026
    [54]
    REULE A A C, SHEN J, SEMAGINA N. Copper affects the location of zinc in bimetallic ion-exchanged mordenite[J]. Chemphyschem,2018,19(12):1500−1506. doi: 10.1002/cphc.201800021
    [55]
    LI Y, HUANG S Y, CHENG Z Z, CAI K, LI L D, MILAN E, LV J, WANG Y, SUN Q, MA X B. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Bronsted acids[J]. Appl Catal B: Environ,2019,256:117777.
    [56]
    SUSHKEVICH V L, VIMONT A, TRAVERT A, IVANOVA I I. Spectroscopic evidence for open and closed lewis acid sites in ZrBEA zeolites[J]. J Phys Chem C,2015,119(31):17633−17639. doi: 10.1021/acs.jpcc.5b02745
    [57]
    ZHAO P, QIAN W, MA H, SHENG H, ZHANG H, YING W. Effect of Zr incorporation on mordenite catalyzed dimethyl ether carbonylation[J]. Catal Lett,2020,151(4):940−954.
    [58]
    MA M, ZHAN E S, HUANG X M, TA N, XIONG Z P, BAI L Y, SHEN W J. Carbonylation of dimethyl ether over Co-HMOR[J]. Catal Sci Technol,2018,8(8):2124−2130. doi: 10.1039/C8CY00407B
    [59]
    DĚDEČEK J, WICHTERLOVÁ B. Co2+ ion siting in pentasil-containing zeolites. I. Co2+ ion sites and their occupation in mordenite. A Vis−NIR diffuse reflectance spectroscopy study[J]. J Phys Chem B,1999,103(9):1462−1476. doi: 10.1021/jp9818941
    [60]
    ZHOU H, ZHU W L, SHI L, LIU H C, LIU S P, XU S T, NI Y M, LIU Y, LI L, LIU Z M. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catal Sci Technol,2015,5(3):1961−1968. doi: 10.1039/C4CY01580K
    [61]
    ZHOU Z Q, LIU H C, CHEN Z Y, ZHU W L, LIU Z M. Decarbonylation of carboxylic acids over H-mordenite[J]. ACS Catal,2021,11(7):4077−4083. doi: 10.1021/acscatal.1c00235
    [62]
    HE T, HOU G J, LI J J, LIU X C, XU S T, HAN X W, BAO X H. Highly selective methanol-to-olefin reaction on pyridine modified H-mordenite[J]. J Energy Chem,2017,26(3):354−358. doi: 10.1016/j.jechem.2017.02.004
    [63]
    ZHAO N, TIAN Y, ZHANG L F, CHENG Q P, LYU S S, DING T, HU Z P, MA X B, LI X G. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chin J Catal,2019,40(6):895−904. doi: 10.1016/S1872-2067(19)63335-8
    [64]
    CAO K P, FAN D, LI L Y, FAN B H, WANG L Y, ZHU D L, WANG Q Y, TIAN P, LIU Z M. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation[J]. ACS Catal,2020,10(5):3372−3380. doi: 10.1021/acscatal.9b04890
    [65]
    LI Y, SUN Q, HUANG S Y, CHENG Z Z, CAI K, LV J, MA X B. Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity[J]. Catal Today,2018,311:81−88. doi: 10.1016/j.cattod.2017.08.050
    [66]
    REULE A A C, SAWADA J A, SEMAGINA N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. J Catal,2017,349:98−109. doi: 10.1016/j.jcat.2017.03.010
    [67]
    LU B W, TSUDA T, SASAKI H, OUMI Y, ITABASHI K, TERANISHI T, SANO T. Effect of aluminum source on hydrothermal synthesis of high-silica mordenite in fluoride medium, and it's thermal stability[J]. Chem Mater,2004,16(2):286−291. doi: 10.1021/cm030576y
    [68]
    CUI M, WANG L, ZHANG Y F, WANG Y, MENG C G. Changes of medium-range structure in the course of crystallization of mordenite from diatomite[J]. Microporous Mesoporous Mater,2015,206:52−57. doi: 10.1016/j.micromeso.2014.12.016
    [69]
    MA Z P, XIE J Y, ZHANG J L, ZHANG W, ZHOU Y, WANG J. Mordenite zeolite with ultrahigh SiO2/Al2O3 ratio directly synthesized from ionic liquid-assisted dry-gel-conversion[J]. Microporous Mesoporous Mater,2016,224:17−25. doi: 10.1016/j.micromeso.2015.11.007
    [70]
    WANG X S, LI R J, YU C C, LIU Y X. Study on the reconstruction in the crystallization process of mordenite[J]. Microporous Mesoporous Mater,2021,311.
    [71]
    HUANG X M, MA M, LI M R, SHEN W J. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether[J]. Catal Sci Technol,2020,10(21):7280−7290. doi: 10.1039/D0CY01362E
    [72]
    WANG M X, HUANG S Y, LU J, CHENG Z Z, LI Y, WANG S P, MA X B. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chin J Catal,2016,37(9):1530−1538. doi: 10.1016/S1872-2067(16)62484-1
    [73]
    WANG X S, LI R J, YU C C, LIU Y X, LIU L M, XU C M, ZHOU H J, LU C X. Influence of acid site distribution on dimethyl ether carbonylation over mordenite[J]. Ind Eng Chem Res,2019,58(39):18065−18072. doi: 10.1021/acs.iecr.9b02610
    [74]
    YAO J, FENG X B, FAN J Q, HE Y L, KOSOL R, ZENG Y, LIU G B, MA Q X, YANG G H, TSUBAKI N. Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2020,306:110431.
    [75]
    THOMPSON L H, DORAISWAMY L K. The rate enhancing effect of ultrasound by inducing supersaturation in a solid-liquid system[J]. Chem Eng Sci,2000,55(16):3085−3090. doi: 10.1016/S0009-2509(99)00481-9
    [76]
    LI Y, YU M, CAI K, WANG M, LV J, HOWE R F, HUANG S, MA X. Template-induced Al distribution in MOR and enhanced activity in dimethyl ether carbonylation[J]. Phys Chem Chem Phys,2020,22(20):11374−11381. doi: 10.1039/D0CP00850H
    [77]
    WANG X S, LI R J, YU C C, LIU Y X, ZHANG L Y, XU C M, ZHOU H J. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel,2019,239:794−803. doi: 10.1016/j.fuel.2018.10.147
    [78]
    KIM J, JO C, LEE S, RYOO R. Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis[J]. J Mater Chem A,2014,2(30):11905−11912. doi: 10.1039/C4TA01948B
    [79]
    TANG T, ZHANG L, FU W, MA Y, XU J, JIANG J, FANG G, XIAO F S. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities[J]. J Am Chem Soc,2013,135(31):11437−11440. doi: 10.1021/ja4043388
    [80]
    TAGO T, KONNO H, SAKAMOTO M, NAKASAKA Y, MASUDA T. Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano- and macro-crystal sizes[J]. Appl Catal A: Gen,2011,403(1/2):183−191. doi: 10.1016/j.apcata.2011.06.029
    [81]
    JANG H G, MIN H K, LEE J K, HONG S B, SEO G. SAPO-34 and ZSM-5 nanocrystals' size effects on their catalysis of methanol-to-olefin reactions[J]. Appl Catal A: Gen,2012,437:120−130.
    [82]
    GUISNET M, COSTA L, RIBEIRO F R. Prevention of zeolite deactivation by coking[J]. J Mol Catal A: Chem,2009,305(1-2):69−83. doi: 10.1016/j.molcata.2008.11.012
    [83]
    XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chin J Catal,2013,34(8):1496−1503. doi: 10.1016/S1872-2067(12)60607-X
    [84]
    KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites: A short review[J]. Chin J Catal,2016,37(4):447−467. doi: 10.1016/S1872-2067(15)61038-5
    [85]
    WEN F L, DING X N, FANG X D, LIU H C, ZHU W L. Crystal size sensitivity of HMOR zeolite in dimethyl ether carbonylation[J]. Catal Commun,2021,154.
    [86]
    MA M, HUANG X, ZHAN E, ZHOU Y, XUE H, SHEN W. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. J Mater Chem A,2017,5(19):8887−8891. doi: 10.1039/C7TA02477K
    [87]
    LIU Y, ZHAO N, XIAN H, CHENG Q, TAN Y, TSUBAKI N, LI X. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Appl Mater Inter,2015,7(16):8398−8403. doi: 10.1021/acsami.5b01905
    [88]
    YUAN Y Y, WANG L Y, LIU H C, TIAN P, YANG M, XU S T, LIU Z M. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chin J Catal,2015,36(11):1910−1919. doi: 10.1016/S1872-2067(15)60960-3
    [89]
    WANG X S, LI R J, YU C C, ZHANG L Y, XU C M, ZHOU H J. Dimethyl ether carbonylation over nanosheet-assembled hierarchical mordenite[J]. Microporous Mesoporous Mater,2019,274:227−235. doi: 10.1016/j.micromeso.2018.07.048
    [90]
    SHENG H B, QIAN W X, ZHANG H T, ZHAO P, MA H F, YING W Y. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous Mesoporous Mater,2020,295:106309.
    [91]
    LU J X, WANG Y Q, SUN C, ZHAO T T, ZHAO J J, WANG Z Y, LIU W R, WU S H, SHI M X, BU L Z. Novel synthesis and catalytic performance of hierarchical MOR[J]. New J Chem,2021,45(19):8629−8638. doi: 10.1039/D1NJ00133G
    [92]
    WEI Y, PARMENTIER T E, DE JONG K P, ZECEVIC J. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chem Soc Rev,2015,44(20):7234−7261. doi: 10.1039/C5CS00155B
    [93]
    LIU S P, CHENG Z Z, LI Y, SUN J H, CAI K, HUANG S Y, LV J, WANG S P, MA X B. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer[J]. Ind Eng Chem Res,2020,59(31):13861−13869. doi: 10.1021/acs.iecr.0c01156
    [94]
    QIN Z X, HAFIZ L, SHEN Y F, VAN DAELE S, BOULLAY P, RUAUX V, MINTOVA S, GILSON J P, VALTCHEV V. Defect-engineered zeolite porosity and accessibility[J]. J Mater Chem A,2020,8(7):3621−3631. doi: 10.1039/C9TA11465C
    [95]
    HE P, LI Y, CAI K, XIONG X, LV J, WANG Y, HUANG S Y, MA X B. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Appl Nano Mater,2020,3(7):6460−6468. doi: 10.1021/acsanm.0c00929
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1103) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return