Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LIU Su-min, YANG Hai-ping, HU Jun-hao, ZOU Jun, CHEN Han-ping, WANG Chen-guang. Study on gasification kinetics and product characteristics of typical lignin[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 428-435. doi: 10.19906/j.cnki.JFCT.2021087
Citation: LIU Su-min, YANG Hai-ping, HU Jun-hao, ZOU Jun, CHEN Han-ping, WANG Chen-guang. Study on gasification kinetics and product characteristics of typical lignin[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 428-435. doi: 10.19906/j.cnki.JFCT.2021087

Study on gasification kinetics and product characteristics of typical lignin

doi: 10.19906/j.cnki.JFCT.2021087
Funds:  The project was supported by the National Key Research and Development Program of China(2018YFB1501403)
  • Received Date: 2021-08-31
  • Rev Recd Date: 2021-10-09
  • Available Online: 2021-10-28
  • Publish Date: 2022-04-26
  • Four typical lignins: alkali lignin, lignosulfonate, hydrolyzed lignin and G-type lignin, were selected to study their gasification weight loss characteristics, kinetic mechanism and product characteristics on a thermogravimetric analyzer (TGA) and fixed bed experiments, in order to reveal the influence of lignin sources on their gasification characteristics. The results showed that the homogeneous model fit the gasification reaction process well. Alkali lignin had the highest pyrolytic activity, reacted at lower temperature, and had the lowest activation energy. However, the structure of pyrolytic coke was dense and the gasification reactivity was poor. G-lignin had similar gasification characteristics with alkali lignin. Lignosulfonate and hydrolyzed lignin had two pyrolysis stages, and their coke gasification reactivities were high. For products characteristics, H2 and CO were the main gas products. Alkali lignin had the H2 yield as high as 55 mmol/g, the highest carbon conversion rate (87%), and the minimum residual coke. However, hydrolyzed lignin and G-lignin had lower gas production, but tar and solid residue were relatively more, which was mainly related to the inorganic mineral content and composition.
  • loading
  • [1]
    KLEMM D, HEUBLEIN B, FINK H, BOHN A. Cellulose: Fascinating biopolymer and sustainable raw material[J]. Angew Chem Int Ed,2005,44(22):3358−3393. doi: 10.1002/anie.200460587
    [2]
    李忠正. 可再生生物质资源——木质素的研究[J]. 南京林业大学学报(自然科学版),2012,36(1):1−7.

    LI Zhong-zheng. Research on renewable biomass resource—lignin[J]. J Nanjing Univ,2012,36(1):1−7.
    [3]
    SOOMRO A, CHEN S, MA S, XU C, SUN Z, XIANG W. Elucidation of syngas composition from catalytic steam gasification of lignin, cellulose, actual and simulated biomasses[J]. Biomass Bioenergy,2018,115:210−222. doi: 10.1016/j.biombioe.2018.05.002
    [4]
    WU C, WANG Z, HUANG J, WILLIAMS P T. Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts[J]. Fuel,2013,106:697−706. doi: 10.1016/j.fuel.2012.10.064
    [5]
    郭大亮. 麦草碱法制浆黑液热解气化特性与产物形成规律研究[D]. 广州: 华南理工大学, 2012.

    GUO Da-liang. Research on pyrolysis and gasification characteristics of wheat strawsoda pulping black liquor and formation rules of products[D]. Guangzhou: South China University of Technology, 2012.
    [6]
    陈磊. 木质素及其模型物热解机理研究[D]. 武汉: 华中科技大学, 2015.

    CHEN Lei. Study on pyrolysis mechanism of lignin and its model compounds[D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [7]
    CHUNFEI W, ZICHUN W, VALERIE D, JUN H, PAUL T W. Nickel-catalysed pyrolysis/gasification of biomass components[J]. J Anal Appl Pyrol,2013,99.
    [8]
    YANG H, DONG Z, LIU B, CHEN Y, GONG M, LI S, CHEN H. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char[J]. Fuel,2021,288:119719.
    [9]
    张斌, 武书彬, 阴秀丽, 吴创之, 邱泽晶, 马隆龙. 酸水解木质素的结构及热解产物分析[J]. 太阳能学报,2011,32(1):19−24.

    ZHANG Bin, WU Shu-bin, YIN Xiu-li, WU Chuang-zhi, QIU Ze-jing, MA Long-long. Analysis of structure and pyrolysis products of acid hydrolyzed lignin[J]. Acta Energ Sol Sin,2011,32(1):19−24.
    [10]
    李计彪, 武书彬, 徐绍华. 木质素磺酸盐的化学结构与热解特性[J]. 林产化学与工业,2014,34(02):23−28.

    LI Ji-biao, WU Shu-bin, XU Shao-hua. Chemical structure and thermochemical property of lignin sulfonate[J]. Chem Ind Prod,2014,34(02):23−28.
    [11]
    陈建行, 刘亮, 田红, 张航, 陈斌斌. β-O-4型木质素二聚体高温蒸汽气化机理的理论研究[J]. 材料导报,2015,29(14):156−161.

    CHEN Jian-xing, LIU Liang, TIAN Hong, ZHANG Hang, CHEN Bin-bin. Theoretical study on mechanism of high-temperature steam-assisted gasification of β-O-4 lignin dimer[J]. Mater Rep,2015,29(14):156−161.
    [12]
    朱力. 铜渣催化气化木质素的基础研究[D]. 昆明: 昆明理工大学, 2015.

    ZHU Li. Basic research on catalytic gasification of lignin with copper slag[D]. Kunming: Kunming University of Science and Technology, 2015.
    [13]
    GUO D, WU S, LIU B, YIN X, YANG Q. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification[J]. Appl Energ,2012,95:22−30. doi: 10.1016/j.apenergy.2012.01.042
    [14]
    CHEW J J, SOH M, SUNARSO J, YONG S, DOSHI V, BHATTACHARYA S. Isothermal kinetic study of CO2 gasification of torrefied oil palm biomass[J]. Biomass Bioenergy,2020,134:105487. doi: 10.1016/j.biombioe.2020.105487
    [15]
    EDREIS E M A, LUO G, LI A, XU C, YAO H. Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H2O co-gasification[J]. Energ Convers Manage,2014,79:355−366. doi: 10.1016/j.enconman.2013.12.043
    [16]
    江龙. 生物质热解气化过程中内在碱金属、碱土金属的迁移及催化特性研究[D]. 武汉: 华中科技大学, 2013.

    JIANG Long. Migration and catalytic characteristic of intrinsic AAEMs during pyrolysis and gasification process of biomass [D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [17]
    郭大亮, 王林芳, 郭惠萍, 陈梦薇, 薛国新, 武书彬. 结合态与无机态钠对木质素半焦气化特性的影响[J]. 农业机械学报,2017,48(03):332−337.

    GUO Da-liang, WANG Lin-fang, GUO Hui-ping, CHEN Meng-wei, XUE Guo-xin, WU Shu-bin. Influence of inorganic and organic bound Na on char gasification characteristics of lignin[J]. Trans Chin Soc Agric Mach,2017,48(03):332−337.
    [18]
    胡俊豪. 煤与生物质混合热解/气化特性及交互作用研究[D]. 武汉: 华中科技大学, 2018.

    HU Jun-hao. Study on the co-pyrolysis/gasification characteristics of coal and biomass and the interactions [D]. Wuhan: Huazhong University of Science and Technology, 2018.
    [19]
    LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12/13):1700−1707. doi: 10.1016/j.fuel.2006.03.008
    [20]
    LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process[J]. Bioresource Technol,2013,138:124−130. doi: 10.1016/j.biortech.2013.03.179
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (511) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return